Skip to main content
Log in

COPI-mediated Transport

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

COPI-coated vesicles are protein and liquid carriers that mediate transport within the early secretory pathway. In this Topical Review, we present their main protein components and discuss current models for cargo sorting. Finally, we describe the striking similarities that exist between the COPI system and the two other characterized types of vesicular carriers: COPII- and clathrin-coated vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonin W., Holroyd C., Tikkanen R., Honing S., Jahn R. 2000. The R-SNARE endobrevin/VAMP-8 mediates homotypic fusion of early endosomes and late endosomes. Mol. Biol. Cell. 11:3289–3298

    PubMed  CAS  Google Scholar 

  • Antonny B., Beraud-Dufour S., Chardin P., Chabre M. 1997. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36:4675–4684

    PubMed  CAS  Google Scholar 

  • Antonny B., Madden D., Hamamoto S., Orci L., Schekman R. 2001. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell. Biol. 3:531–537

    PubMed  CAS  Google Scholar 

  • Antonny B., Schekman R. 2001. ER export: public transportation by the COPII coach. Curr. Opin. Cell. Biol. 13:438–443

    PubMed  CAS  Google Scholar 

  • Antonny B. 2004. SNARE filtering by dynamin. Cell 119:581–582

    PubMed  CAS  Google Scholar 

  • Bannykh S.I., Balch W.E. 1998. Selective transport of cargo between the endoplasmic reticulum and Golgi compartments. Histochem. Cell. Biol. 109:463–475

    PubMed  CAS  Google Scholar 

  • Barlowe C., Orci L., Yeung T., Hosobuchi M., Hamamoto S., Salama N., Rexach M.F., Ravazzola M., Amherdt M., Schekman R. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907

    PubMed  CAS  Google Scholar 

  • Ben-Tekaya H., Miura K., Pepperkok R., Hauri H.P. 2005. Live imaging of bidirectional traffic from the ERGIC. J. Cell. Sci. 118:357–367

    PubMed  CAS  Google Scholar 

  • Bi X., Corpina R.A., Goldberg J. 2002. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419:271–277

    PubMed  CAS  Google Scholar 

  • Bigay J., Gounon P., Robineau S., Antonny B. 2003. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563–566

    PubMed  CAS  Google Scholar 

  • Bigay J., Casella J.F., Drin G., Mesmin B., Antonny B. 2005. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. Embo. J. 24:2244–2253

    PubMed  CAS  Google Scholar 

  • Blagitko N., Schulz U., Schinzel A.A., Ropers H.H., Kalscheuer V.M. 1999. gamma2-COP, a novel imprinted gene on chromosome 7q32, defines a new imprinting cluster in the human genome. Hum. Mol. Genet. 8:2387–2396

    PubMed  CAS  Google Scholar 

  • Blobel G., Potter V.R. 1967. Studies on free and membrane-bound ribosomes in rat liver. II. Interaction of ribosomes and membranes. J. Mol. Biol. 26:293–301

    PubMed  CAS  Google Scholar 

  • Blobel G., Dobberstein B. 1975a. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell. Biol. 67:835–851

    CAS  Google Scholar 

  • Blobel G., Dobberstein B. 1975b. Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell. Biol. 67:852–862

    CAS  Google Scholar 

  • Boehm M., Aguilar R.C., Bonifacino J.S. 2001. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). Embo. J. 20:6265–6276

    PubMed  CAS  Google Scholar 

  • Bonfanti L., Mironov A.A., Jr., Martinez-Menarguez J.A., Martella O., Fusella A., Baldassarre M., Buccione R., Geuze H.J., Mironov A.A., Luini A. 1998. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:993–1003

    PubMed  CAS  Google Scholar 

  • Brandhorst D., Zwilling D., Rizzoli S.O., Lippert U., Lang T., Jahn R. 2006. Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc. Natl. Acad. Sci. USA 103:2701–2706

    PubMed  CAS  Google Scholar 

  • Bremser M., Nickel W., Schweikert M., Ravazzola M., Amherdt M., Hughes C.A., Sollner T.H., Rothman J.E., Wieland F.T. 1999. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506

    PubMed  CAS  Google Scholar 

  • Burri L., Varlamov O., Doege C.A., Hofmann K., Beilharz T., Rothman J.E., Sollner T.H., Lithgow T. 2003. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 100:9873–9877

    PubMed  CAS  Google Scholar 

  • Cabrera M., Muniz M., Hidalgo J., Vega L., Martin M.E., Velasco A. 2003. The retrieval function of the KDEL receptor requires PKA phosphorylation of its C-terminus. Mol. Biol. Cell. 14:4114–4125

    PubMed  CAS  Google Scholar 

  • Caro L.G., Palade G.E. 1964. Protein Synthesis, Storage, and Discharge in the Pancreatic Exocrine Cell. An Autoradiographic Study. J. Cell. Biol. 20:473–495

    PubMed  CAS  Google Scholar 

  • Chardin P., Paris S., Antonny B., Robineau S., Beraud-Dufour S., Jackson C.L., Chabre M. 1996. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384:481–484

    PubMed  CAS  Google Scholar 

  • Collins B.M., McCoy A.J., Kent H.M., Evans P.R., Owen D.J. 2002. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109:523–535

    PubMed  CAS  Google Scholar 

  • Contreras I., Ortiz-Zapater E., Aniento F. 2004. Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer. Plant. J. 38:685–698

    PubMed  CAS  Google Scholar 

  • Cosson P., Letourneur F. 1994. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631

    PubMed  CAS  Google Scholar 

  • Cosson P., Lefkir Y., Demolliere C., Letourneur F. 1998. New COP1-binding motifs involved in ER retrieval. Embo. J. 17:6863–6870

    PubMed  CAS  Google Scholar 

  • Cosson P., Amherdt M., Rothman J.E., Orci L. 2002. A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc. Natl. Acad. Sci. USA 99:12831–12834

    PubMed  CAS  Google Scholar 

  • Cukierman E., Huber I., Rotman M., Cassel D. 1995. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270:1999–2002

    PubMed  CAS  Google Scholar 

  • De Matteis M.A., Di Campli A., Godi A. 2005. The role of the phosphoinositides at the Golgi complex. Biochim. Biophys. Acta. 1744:396–405

    PubMed  Google Scholar 

  • Dilcher M., Veith B., Chidambaram S., Hartmann E., Schmitt H.D., Fischer von Mollard G. 2003. Use1p is a yeast SNARE protein required for retrograde traffic to the ER. Embo. J. 22:3664–3674

    PubMed  CAS  Google Scholar 

  • Donaldson J.G., Cassel D., Kahn R.A., Klausner R.D. 1992a. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. Natl. Acad. Sci. USA 89:6408–6412

    CAS  Google Scholar 

  • Donaldson J.G., Finazzi D., Klausner R.D. 1992b. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350–352

    CAS  Google Scholar 

  • Duden R., Griffiths G., Frank R., Argos P., Kreis T.E. 1991. Beta-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64:649–665

    PubMed  CAS  Google Scholar 

  • Ehrlich M., Boll W., Van Oijen A., Hariharan R., Chandran K., Nibert M.L., Kirchhausen T. 2004. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118:591–605

    PubMed  CAS  Google Scholar 

  • Eugster A., Frigerio G., Dale M., Duden R. 2000. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. Embo. J. 19:3905–3917

    PubMed  CAS  Google Scholar 

  • Eugster A., Frigerio G., Dale M., Duden R. 2004. The alpha- and beta’-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol. Biol. Cell. 15:1011–1023

    PubMed  CAS  Google Scholar 

  • Farsad K., Ringstad N., Takei K., Floyd S.R., Rose K., De Camilli P. 2001. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell. Biol. 155:193–200

    PubMed  CAS  Google Scholar 

  • Faulstich D., Auerbach S., Orci L., Ravazzola M., Wegchingel S., Lottspeich F., Stenbeck G., Harter C., Wieland F.T., Tschochner H. 1996. Architecture of coatomer: molecular characterization of delta-COP and protein interactions within the complex. J. Cell. Biol. 135:53–61

    PubMed  CAS  Google Scholar 

  • Fiedler K., Veit M., Stamnes M.A., Rothman J.E. 1996. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273:1396–1399

    PubMed  CAS  Google Scholar 

  • Ford M.G., Mills I.G., Peter B.J., Vallis Y., Praefcke G.J., Evans P.R., McMahon H.T. 2002. Curvature of clathrin-coated pits driven by epsin. Nature 419:361–366

    PubMed  CAS  Google Scholar 

  • Franco M., Chardin P., Chabre M., Paris S. 1996. Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J. Biol. Chem. 271:1573–1578

    PubMed  CAS  Google Scholar 

  • Friedlander R., Jarosch E., Urban J., Volkwein C., Sommer T. 2000. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell. Biol. 2:379–384

    PubMed  CAS  Google Scholar 

  • Futatsumori M., Kasai K., Takatsu H., Shin H.W., Nakayama K. 2000. Identification and characterization of novel isoforms of COP I subunits. J. Biochem. (Tokyo) 128:793–801

    CAS  Google Scholar 

  • Gallop, J.L., McMahon, H.T. 2005. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp.:223–231

  • Gleeson P.A., Lock J.G., Luke M.R., Stow J.L. 2004. Domains of the TGN: coats, tethers and G proteins. Traffic 5:315–326

    PubMed  CAS  Google Scholar 

  • Glick B.S., Malhotra V. 1998. The curious status of the Golgi apparatus. Cell 95:883–889

    PubMed  CAS  Google Scholar 

  • Goldberg J. 1999. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96:893–902

    PubMed  CAS  Google Scholar 

  • Goldberg J. 2000. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100:671–679

    PubMed  CAS  Google Scholar 

  • Gommel D.U., Memon A.R., Heiss A., Lottspeich F., Pfannstiel J., Lechner J., Reinhard C., Helms J.B., Nickel W., Wieland F.T. 2001. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. Embo. J. 20:6751–6760

    PubMed  CAS  Google Scholar 

  • Gu F., Crump C.M., Thomas G. 2001. Trans-Golgi network sorting. Cell. Mol. Life. Sci. 58:1067–1084

    PubMed  CAS  Google Scholar 

  • Hara-Kuge S., Kuge O., Orci L., Amherdt M., Ravazzola M., Wieland F.T., Rothman J.E. 1994. En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J. Cell. Biol. 124:883–892

    PubMed  CAS  Google Scholar 

  • Harter C., Pavel J., Coccia F., Draken E., Wegehingel S., Tschochner H., Wieland F. 1996. Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc. Natl. Acad. Sci. USA 93:1902–1906

    PubMed  CAS  Google Scholar 

  • Harter C., Wieland F.T. 1998. A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer. Proc. Natl. Acad. Sci. USA 95:11649–11654

    PubMed  CAS  Google Scholar 

  • Hauri H.P., Kappeler F., Andersson H., Appenzeller C. 2000. ERGIC-53 and traffic in the secretory pathway. J. Cell. Sci. 113 (Pt 4):587–596

    PubMed  CAS  Google Scholar 

  • Heldwein E.E., Macia E., Wang J., Yin H.L., Kirchhausen T., Harrison S.C. 2004. Crystal structure of the clathrin adaptor protein 1 core. Proc. Natl. Acad. Sci. USA 101:14108–14113

    PubMed  CAS  Google Scholar 

  • Hoffman G.R., Rahl P.B., Collins R.N., Cerione R.A. 2003. Conserved structural motifs in intracellular trafficking pathways: structure of the gammaCOP appendage domain. Mol. Cell. 12:615–625

    PubMed  CAS  Google Scholar 

  • Honda A., Al-Awar O.S., Hay J.C., Donaldson J.G. 2005. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J. Cell. Biol. 168:1039–1051

    PubMed  CAS  Google Scholar 

  • Hong W. 2005. SNAREs and traffic. Biochim. Biophys. Acta. 1744:493–517

    PubMed  Google Scholar 

  • Hudson R.T., Draper R.K. 1997. Interaction of coatomer with aminoglycoside antibiotics: evidence that coatomer has at least two dilysine binding sites. Mol. Biol. Cell. 8:1901–1910

    PubMed  CAS  Google Scholar 

  • Itoh T., De Camilli P. 2004. Membrane trafficking: dual-key strategy. Nature 429:141–143

    PubMed  CAS  Google Scholar 

  • Jackson M.R., Nilsson T., Peterson P.A. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. Embo. J. 9:3153–3162

    PubMed  CAS  Google Scholar 

  • Jamieson J.D., Palade G.E. 1966. Role of the Golgi complex in the intracellular transport of secretory proteins. Proc. Natl. Acad. Sci. USA 55:424–431

    PubMed  CAS  Google Scholar 

  • Kahn R.A., Gilman A.G. 1984. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem. 259:6228–6234

    PubMed  CAS  Google Scholar 

  • Karrenbauer A., Jeckel D., Just W., Birk R., Schmidt R.R., Rothman J.E., Wieland F.T. 1990. The rate of bulk flow from the Golgi to the plasma membrane. Cell 63:259–267

    PubMed  CAS  Google Scholar 

  • Klarlund J.K., Tsiaras W., Holik J.J., Chawla A., Czech M.P. 2000. Distinct polyphosphoinositide binding selectivities for pleckstrin homology domains of GRP1-like proteins based on diglycine versus triglycine motifs. J. Biol. Chem. 275:32816–32821

    PubMed  CAS  Google Scholar 

  • Kuge O., Hara-Kuge S., Orci L., Ravazzola M., Amherdt M., Tanigawa G., Wieland F.T., Rothman J.E. 1993. zeta-COP, a subunit of coatomer, is required for COP-coated vesicle assembly. J. Cell. Biol. 123:1727–1734

    PubMed  CAS  Google Scholar 

  • Kweon H.S., Beznoussenko G.V., Micaroni M., Polishchuk R.S., Trucco A., Martella O., Di Giandomenico D., Marra P., Fusella A., Di Pentima A., Berger E.G., Geerts W.J., Koster A.J., Burger K.N., Luini A., Mironov A.A. 2004. Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol. Biol. Cell. 15:4710–4724

    PubMed  CAS  Google Scholar 

  • Lanoix J., Ouwendijk J., Stark A., Szafer E., Cassel D., Dejgaard K., Weiss M., Nilsson T. 2001. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell. Biol. 155:1199–1212

    PubMed  CAS  Google Scholar 

  • Lee M.C., Miller E.A., Goldberg J., Orci L., Schekman R. 2004. Bi-Directional Protein Transport Between the ER and Golgi. Annu. Rev. Cell. Dev. Biol. 20:87–123

    PubMed  CAS  Google Scholar 

  • Lee M.C., Orci L., Hamamoto S., Futai E., Ravazzola M., Schekman R. 2005a. Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle. Cell 122:605–617

    CAS  Google Scholar 

  • Lee S.Y., Yang J.S., Hong W., Premont R.T., Hsu V.W. 2005b. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell. Biol. 168:281–290

    CAS  Google Scholar 

  • Letourneur F., Gaynor E.C., Hennecke S., Demolliere C., Duden R., Emr S.D., Riezman H., Cosson P. 1994. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207

    PubMed  CAS  Google Scholar 

  • Lewis M.J., Pelham H.R. 1990. A human homologue of the yeast HDEL receptor. Nature 348:162–163

    PubMed  CAS  Google Scholar 

  • Lewis M.J., Sweet D.J., Pelham H.R. 1990. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61:1359–1363

    PubMed  CAS  Google Scholar 

  • Lewis M.J., Pelham H.R. 1992. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68:353–364

    PubMed  CAS  Google Scholar 

  • Lewis S.M., Poon P.P., Singer R.A., Johnston G.C., Spang A. 2004. The ArfGAP Glo3 is required for the generation of COPI vesicles. Mol. Biol. Cell. 15:4064–4072

    PubMed  CAS  Google Scholar 

  • Liu W., Duden R., Phair R.D., Lippincott-Schwartz J. 2005. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J. Cell. Biol. 168:1053–1063

    PubMed  CAS  Google Scholar 

  • Lowe M., Kreis T.E. 1995. In vitro assembly and disassembly of coatomer. J. Biol. Chem. 270:31364–31371

    PubMed  CAS  Google Scholar 

  • Majoul I., Sohn K., Wieland F.T., Pepperkok R., Pizza M., Hillemann J., Soling H.D. 1998. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell. Biol. 143:601–612

    PubMed  CAS  Google Scholar 

  • Majoul I., Straub M., Hell S.W., Duden R., Soling H.D. 2001. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell. 1:139–153

    PubMed  CAS  Google Scholar 

  • Malhotra V., Serafini T., Orci L., Shepherd J.C., Rothman J.E. 1989. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58:329–336

    PubMed  CAS  Google Scholar 

  • Malsam J., Gommel D., Wieland F.T., Nickel W. 1999. A role for ADP ribosylation factor in the control of cargo uptake during COPI-coated vesicle biogenesis. FEBS Lett. 462:267–272

    PubMed  CAS  Google Scholar 

  • Malsam J., Satoh A., Pelletier L., Warren G. 2005. Golgin tethers define subpopulations of COPI vesicles. Science 307:1095–1098

    PubMed  CAS  Google Scholar 

  • Marsh B.J., Volkmann N., McIntosh J.R., Howell K.E. 2004. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc. Natl. Acad. Sci. USA 101:5565–5570

    PubMed  CAS  Google Scholar 

  • Martinez-Menarguez J.A., Geuze H.J., Slot J.W., Klumperman J. 1999. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98:81–90

    PubMed  CAS  Google Scholar 

  • Matsuoka K., Orci L., Amherdt M., Bednarek S.Y., Hamamoto S., Schekman R., Yeung T. 1998. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93:263–275

    PubMed  CAS  Google Scholar 

  • Meyer D.M., Crottet P., Maco B., Degtyar E., Cassel D., Spiess M. 2005. Oligomerization and dissociation of AP-1 adaptors are regulated by cargo signals and by ArfGAP1-induced GTP hydrolysis. Mol. Biol. Cell. 16:4745–4754

    PubMed  CAS  Google Scholar 

  • Miller E., Antonny B., Hamamoto S., Schekman R. 2002. Cargo selection into COPII vesicles is driven by the Sec24p subunit. Embo. J. 21:6105–6113

    PubMed  CAS  Google Scholar 

  • Mironov A.A., Beznoussenko G.V., Polishchuk R.S., Trucco A. 2005. Intra-Golgi transport: a way to a new paradigm? Biochim. Biophys. Acta. 1744:340–350

    CAS  Google Scholar 

  • Munro S., Pelham H.R. 1987. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    PubMed  CAS  Google Scholar 

  • Munro S. 2004. Organelle identity and the organization of membrane traffic. Nat. Cell. Biol. 6:469–472

    PubMed  CAS  Google Scholar 

  • Nickel W., Malsam J., Gorgas K., Ravazzola M., Jenne N., Helms J.B., Wieland F.T. 1998. Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPgammaS in vitro. J. Cell. Sci. 111 (Pt 20):3081–3090

    PubMed  CAS  Google Scholar 

  • Nilsson T., Jackson M., Peterson P.A. 1989. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58:707–718

    PubMed  CAS  Google Scholar 

  • Niu T.K., Pfeifer A.C., Lippincott-Schwartz J., Jackson C.L. 2005. Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol. Biol. Cell. 16:1213–1222

    PubMed  CAS  Google Scholar 

  • Ooi C.E., Dell’Angelica E.C., Bonifacino J.S. 1998. ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J. Cell. Biol. 142:391–402

    PubMed  CAS  Google Scholar 

  • Orci L., Glick B.S., Rothman J.E. 1986. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46:171–184

    PubMed  CAS  Google Scholar 

  • Orci L., Palmer D.J., Ravazzola M., Perrelet A., Amherdt M., Rothman J.E. 1993. Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362:648–652

    PubMed  CAS  Google Scholar 

  • Orci L., Stamnes M., Ravazzola M., Amherdt M., Perrelet A., Sollner T.H., Rothman J.E. 1997. Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–349

    PubMed  CAS  Google Scholar 

  • Orci L., Amherdt M., Ravazzola M., Perrelet A., Rothman J.E. 2000a. Exclusion of golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J. Cell. Biol. 150:1263–1270

    CAS  Google Scholar 

  • Orci L., Ravazzola M., Volchuk A., Engel T., Gmachl M., Amherdt M., Perrelet A., Sollner T.H., Rothman J.E. 2000b. Anterograde flow of cargo across the golgi stack potentially mediated via bidirectional "percolating" COPI vesicles. Proc. Natl. Acad. Sci. USA 97:10400–10405

    CAS  Google Scholar 

  • Ostermann J., Orci L., Tani K., Amherdt M., Ravazzola M., Elazar Z., Rothman J.E. 1993. Stepwise assembly of functionally active transport vesicles. Cell 75:1015–1025

    PubMed  CAS  Google Scholar 

  • Owen D.J., Collins B.M., Evans P.R. 2004. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell. Dev. Biol. 20:153–191

    PubMed  CAS  Google Scholar 

  • Paleotti O., Macia E., Luton F., Klein S., Partisani M., Chardin P., Kirchhausen T., Franco M. 2005. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J. Biol. Chem. 280:21661–21666

    PubMed  CAS  Google Scholar 

  • Palmer D.J., Helms J.B., Beckers C.J., Orci L., Rothman J.E. 1993. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268:12083–12089

    PubMed  CAS  Google Scholar 

  • Parlati F., McNew J.A., Fukuda R., Miller R., Sollner T.H., Rothman J.E. 2000. Topological restriction of SNARE-dependent membrane fusion. Nature 407:194–198

    PubMed  CAS  Google Scholar 

  • Parlati F., Varlamov O., Paz K., McNew J.A., Hurtado D., Sollner T.H., Rothman J.E. 2002. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 99:5424–5429

    PubMed  CAS  Google Scholar 

  • Pavel J., Harter C., Wieland F.T. 1998. Reversible dissociation of coatomer: functional characterization of a beta/delta-coat protein subcomplex. Proc. Natl. Acad. Sci. USA 95:2140–2145

    PubMed  CAS  Google Scholar 

  • Pelham H.R. 1988. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. Embo. J. 7:913–918

    PubMed  CAS  Google Scholar 

  • Pelham H.R., Rothman J.E. 2000. The debate about transport in the Golgi--two sides of the same coin? Cell 102:713–719

    PubMed  CAS  Google Scholar 

  • Pepperkok R., Whitney J.A., Gomez M., Kreis T.E. 2000. COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J. Cell. Sci. 113 (Pt 1):135–144

    PubMed  CAS  Google Scholar 

  • Peters C., Baars T.L., Buhler S., Mayer A. 2004. Mutual control of membrane fission and fusion proteins. Cell 119:667–678

    PubMed  CAS  Google Scholar 

  • Presley J.F., Cole N.B., Schroer T.A., Hirschberg K., Zaal K.J., Lippincott-Schwartz J. 1997. ER-to-Golgi transport visualized in living cells. Nature 389:81–85

    PubMed  CAS  Google Scholar 

  • Presley J.F., Ward T.H., Pfeifer A.C., Siggia E.D., Phair R.D., Lippincott-Schwartz J. 2002. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417:187–193

    PubMed  CAS  Google Scholar 

  • Rein U., Andag U., Duden R., Schmitt H.D., Spang A. 2002. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J. Cell. Biol. 157:395–404

    PubMed  CAS  Google Scholar 

  • Reinhard C., Harter C., Bremser M., Brugger B., Sohn K., Helms J.B., Wieland F. 1999. Receptor-induced polymerization of coatomer. Proc. Natl. Acad. Sci. USA 96:1224–1228

    PubMed  CAS  Google Scholar 

  • Reinhard C., Schweikert M., Wieland F.T., Nickel W. 2003. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc. Natl. Acad. Sci. USA 100:8253–8257

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E., Musch A. 2005. Protein sorting in the Golgi complex: shifting paradigms. Biochim. Biophys. Acta. 1744:455–464

    PubMed  CAS  Google Scholar 

  • Rothman J.E., Wieland F.T. 1996. Protein sorting by transport vesicles. Science 272:227–234

    PubMed  CAS  Google Scholar 

  • Scheel A.A., Pelham H.R. 1998. Identification of amino acids in the binding pocket of the human KDEL receptor. J. Biol. Chem. 273:2467–2472

    PubMed  CAS  Google Scholar 

  • Schledzewski K., Brinkmann H., Mendel R.R. 1999. Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol. 48:770–778

    PubMed  CAS  Google Scholar 

  • Semenza J.C., Hardwick K.G., Dean N., Pelham H.R. 1990. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61:1349–1357

    PubMed  CAS  Google Scholar 

  • Serafini T., Orci L., Amherdt M., Brunner M., Kahn R.A., Rothman J.E. 1991a. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67:239–253

    CAS  Google Scholar 

  • Serafini T., Stenbeck G., Brecht A., Lottspeich F., Orci L., Rothman J.E., Wieland F.T. 1991b. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature 349:215–220

    CAS  Google Scholar 

  • Short B., Haas A., Barr F.A. 2005. Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim. Biophys. Acta. 1744:383–395

    PubMed  CAS  Google Scholar 

  • Shorter J., Beard M.B., Seemann J., Dirac-Svejstrup A.B., Warren G. 2002. Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J. Cell. Biol. 157:45–62

    PubMed  CAS  Google Scholar 

  • Sohn K., Orci L., Ravazzola M., Amherdt M., Bremser M., Lottspeich F., Fiedler K., Helms J.B., Wieland F.T. 1996. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J Cell Biol 135:1239–1248

    PubMed  CAS  Google Scholar 

  • Sollner T., Whiteheart S.W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J.E. 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    PubMed  CAS  Google Scholar 

  • Sonnichsen B., Watson R., Clausen H., Misteli T., Warren G. 1996. Sorting by COP I-coated vesicles under interphase and mitotic conditions. J. Cell. Biol. 134:1411–1425

    PubMed  CAS  Google Scholar 

  • Sonnichsen B., Lowe M., Levine T., Jamsa E., Dirac-Svejstrup B., Warren G. 1998. A role for giantin in docking COPI vesicles to Golgi membranes. J. Cell. Biol. 140:1013–1021

    PubMed  CAS  Google Scholar 

  • Spang A., Matsuoka K., Hamamoto S., Schekman R., Orci L. 1998. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl. Acad. Sci. USA 95:11199–11204

    PubMed  CAS  Google Scholar 

  • Stamnes M.A., Craighead M.W., Hoe M.H., Lampen N., Geromanos S., Tempst P., Rothman J.E. 1995. An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc. Natl. Acad. Sci. USA 92:8011–8015

    PubMed  CAS  Google Scholar 

  • Stenbeck G., Harter C., Brecht A., Herrmann D., Lottspeich F., Orci L., Wieland F.T. 1993. beta’-COP, a novel subunit of coatomer. Embo. J. 12:2841–2845

    PubMed  CAS  Google Scholar 

  • Szafer E., Rotman M., Cassel D. 2001. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane. J. Biol. Chem. 276:47834–47839

    PubMed  CAS  Google Scholar 

  • Sztul E., Lupashin V. 2006. Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell. Physiol. 290:C11–26

    PubMed  CAS  Google Scholar 

  • Takei K., Slepnev V.I., Haucke V., De Camilli P. 1999. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell. Biol. 1:33–39

    PubMed  CAS  Google Scholar 

  • Tanigawa G., Orci L., Amherdt M., Ravazzola M., Helms J.B., Rothman J.E. 1993. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell. Biol. 123:1365–1371

    PubMed  CAS  Google Scholar 

  • Terui T., Kahn R.A., Randazzo P.A. 1994. Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor 1. Evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 269:28130–28135

    PubMed  CAS  Google Scholar 

  • Tooze S.A., Martens G.J., Huttner W.B. 2001. Secretory granule biogenesis: rafting to the SNARE. Trends. Cell. Biol. 11:116–122

    PubMed  CAS  Google Scholar 

  • Traub L.M., Ostrom J.A., Kornfeld S. 1993. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell. Biol. 123:561–573

    PubMed  CAS  Google Scholar 

  • Traub L.M. 2005. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta. 1744:415–437

    PubMed  CAS  Google Scholar 

  • Travers K.J., Patil C.K., Wodicka L., Lockhart D.J., Weissman J.S., Walter P. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    PubMed  CAS  Google Scholar 

  • Trucco A., Polishchuk R.S., Martella O., Di Pentima A., Fusella A., Di Giandomenico D., San Pietro E., Beznoussenko G.V., Polishchuk E.V., Baldassarre M., Buccione R., Geerts W.J., Koster A.J., Burger K.N., Mironov A.A., Luini A. 2004. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat. Cell. Biol. 6:1071–1081

    PubMed  CAS  Google Scholar 

  • Walter P., Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell. Biol. 91:557–561

    PubMed  CAS  Google Scholar 

  • Wang C.C., Ng C.P., Lu L., Atlashkin V., Zhang W., Seet L.F., Hong W. 2004. A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev. Cell. 7:359–371

    PubMed  CAS  Google Scholar 

  • Waters M.G., Serafini T., Rothman J.E. 1991. ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248–251

    PubMed  CAS  Google Scholar 

  • Watson P.J., Frigerio G., Collins B.M., Duden R., Owen D.J. 2004. Gamma-COP appendage domain - structure and function. Traffic 5:79–88

    PubMed  CAS  Google Scholar 

  • Weber T., Zemelman B.V., McNew J.A., Westermann B., Gmachl M., Parlati F., Sollner T.H., Rothman J.E. 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    PubMed  CAS  Google Scholar 

  • Wegmann D., Hess P., Baier C., Wieland F.T., Reinhard C. 2004. Novel isotypic gamma/zeta subunits reveal three coatomer complexes in mammals. Mol. Cell. Biol. 24:1070–1080

    PubMed  CAS  Google Scholar 

  • Wild K., Halic M., Sinning I., Beckmann R. 2004. SRP meets the ribosome. Nat. Struct. Mol. Biol. 11:1049–1053

    PubMed  CAS  Google Scholar 

  • Wilson D.W., Lewis M.J., Pelham H.R. 1993. pH-dependent binding of KDEL to its receptor in vitro. J. Biol. Chem. 268:7465–7468

    PubMed  CAS  Google Scholar 

  • Xu Y., Martin S., James D.E., Hong W. 2002. GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol. Biol. Cell. 13:3493–3507

    PubMed  CAS  Google Scholar 

  • Yang J.S., Lee S.Y., Gao M., Bourgoin S., Randazzo P.A., Premont R.T., Hsu V.W. 2002. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell. Biol. 159:69–78

    PubMed  CAS  Google Scholar 

  • Yoshihisa T., Barlowe C., Schekman R. 1993. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259:1466–1468

    PubMed  CAS  Google Scholar 

  • Yuan H., Michelsen K., Schwappach B. 2003. 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr. Biol. 13:638–646

    PubMed  CAS  Google Scholar 

  • Zerangue N., Schwappach B., Jan Y.N., Jan L.Y. 1999. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548

    PubMed  CAS  Google Scholar 

  • Zhao L., Helms J.B., Brugger B., Harter C., Martoglio B., Graf R., Brunner J., Wieland F.T. 1997. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc. Natl. Acad. Sci. USA 94:4418–4423

    PubMed  CAS  Google Scholar 

  • Zhao L., Helms J.B., Brunner J., Wieland F.T. 1999. GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J. Biol. Chem. 274:14198–14203

    PubMed  CAS  Google Scholar 

  • Zhao X., Lasell T.K., Melancon P. 2002. Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol. Biol. Cell. 13:119–133

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Patricia McCabe for carefully proofreading the manuscript. We apologize to those authors who have publications relevant to the COPI-dependent transport that were not cited in this review due to space limitations. Moreover, in many cases, review articles were cited instead of the original literature, owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Béthune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béthune, J., Wieland, F. & Moelleken, J. COPI-mediated Transport. J Membrane Biol 211, 65–79 (2006). https://doi.org/10.1007/s00232-006-0859-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0859-7

Keywords

Navigation