Skip to main content

Advertisement

Log in

Effects of Combined Whole-Body Electromyostimulation and Protein Supplementation on Local and Overall Muscle/Fat Distribution in Older Men with Sarcopenic Obesity: The Randomized Controlled Franconia Sarcopenic Obesity (FranSO) Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The primary aim of the project was to determine the combined effect of whole-body electromyostimulation (WB-EMS) and protein supplements on local and overall muscle/fat distribution in older man with sarcopenic obesity (SO). Community-dwelling (cdw) men ≥ 70 years with SO were randomly allocated to a WB-EMS and protein supplementation (n = 33) or a non-intervention control group (CG: n = 34). WB-EMS was conducted 1.5 sessions of 20 min/week for 16 weeks. Whey protein supplementation aimed to ensure a daily intake of 1.8 g/kg body mass. The primary study endpoint was muscle/fat distribution of the total intra-fascial volume of the mid-thigh as determined by MRI. The core secondary endpoint was appendicular muscle mass (ASMM) and trunk fat; subordinate secondary endpoint was lower-leg performance. Thigh lean muscle volume increased significantly in the WB-EMS&P (p < 0.001) and increased slightly in the CG (p = 0.435). In parallel, fat volume increased significantly in the CG (p < 0.001) and was maintained in the WB-EMS&P group (p = 0.728). Group differences for both parameters were significant (p = 0.033 and p = 0.002). ASMM and trunk fat also differed significantly (p < 0.001) between WB-EMS and CG, with significant positive changes in the WB-EMS&P (p < 0.001) and no relevant changes in the CG (p ≥ 0.458). Finally, changes of gait velocity, leg-extensor strength, and advanced lower extremity function of the WB-EMS&P group differed significantly from the CG (p ≤ 0.002). WB-EMS combined with whey protein supplements favorably affects local and overall muscle/fat distribution and lower limb functioning in cdw men 70+ with SO. Thus, this time-saving, joint-friendly, and highly customizable approach may be an option for people either unable or unmotivated to conduct intense (resistance) exercise protocols.

Trial registration number NCT02857660 on http://www.clinicaltrials.gov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Franconia is the northern part of Bavaria.

  2. Appendicular skeletal muscle mass/body mass index.

  3. …As a marker for intramyocellular lipid content and corresponding fat infiltration of the myocytes.

  4. However, not all of these studies diagnosed sarcopenia or SO properly according to recent definitions, e.g., [15]. With respect to anthropometric parameters, most studies applied high cut-off points for SMI (e.g., [30,31,32,33]), (too) low cut-off points for PBF (e.g., [31]), or BMI-based obesity diagnosis [30, 34, 35].

References

  1. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11:693–700

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clynes MA, Edwards MH, Buehring B, Dennison EM, Binkley N, Cooper C (2015) Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcif Tissue Int 97:445–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kalinkovich A, Livshits G (2017) Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 35:200–221

    Article  PubMed  CAS  Google Scholar 

  4. Börjesson M, Hellenius ML, Jansson E, Karlson J, Leijon M, Staehle A, Sundberg CJ, Taube T (2010) physical activity in the prevention and treatment of disease. Swedish Institute of Health, Stockholm

    Google Scholar 

  5. Goisser S, Kemmler W, Porzel S, Volkert D, Sieber CC, Bollheimer LC, Freiberger E (2015) Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons—a narrative review. Clin Interv Aging 10:1267–1282

    PubMed  PubMed Central  Google Scholar 

  6. DESTATIS (2016) Ältere Menschen in Deutschland und der EU. Statistisches Bundesamt, Berlin

    Google Scholar 

  7. Carlson SA, Fulton JE, Schoenborn CA, Loustalot F (2010) Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am J Prev Med 39:305–313

    Article  PubMed  Google Scholar 

  8. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS (2009) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 41:1510–1530

    Article  PubMed  Google Scholar 

  9. Kemmler W, Bebenek M, Engelke K, von Stengel S (2014) Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: the Training and ElectroStimulation Trial (TEST-III). Age 36:395–406

    Article  PubMed  Google Scholar 

  10. Kemmler W, Teschler M, Weissenfels A et al (2016) Whole-body electromyostimulation to fight sarcopenic obesity in community-dwelling older women at risk. Results of the randomized controlled FORMOsA-sarcopenic obesity study. Osteoporos Int 27:3261–3270

    Article  PubMed  CAS  Google Scholar 

  11. Bauer J, Biolo G, Cederholm T et al (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14:542–559

    Article  PubMed  Google Scholar 

  12. Kemmler W, Weissenfels A, Teschler M, Willert S, Bebenek M, Shojaa M, Kohl M, Freiberger E, Sieber C, von Stengel S (2017) Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk. The randomized controlled FranSO study. Clin Interv Aging 12

  13. Kemmler W, Kohl M, Freiberger E, Sieber C, von Stengel S (2018) Effect of whole-body electromyostimulation and/or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial. BMC Geriatr 18:70

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kemmler W, Teschler M, Weissenfels A, Sieber C, Freiberger E, von Stengel S (2017) Prevalence of sarcopenia and sarcopenic obesity in community-dwelling German men 70 + using various established definitions. Osteoporos Int 28:1881–1889

    Article  PubMed  CAS  Google Scholar 

  15. Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A 69:547–558

    Article  Google Scholar 

  16. Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448

    Article  PubMed  CAS  Google Scholar 

  17. Kemmler W, Birlauf A, von Stengel S (2010) Einfluss von Ganzkörper-Elektromyostimulation auf das Metabolische Syndrom bei älteren Männern mit metabolischem Syndrom. Dtsch Z Sportmed 61:117–123

    Google Scholar 

  18. Kemmler W, Teschler M, Weissenfels A, Bebenek M, Frohlich M, Kohl M, von Stengel S (2016) Effects of whole-body electromyostimulation versus high-intensity resistance exercise on body composition and strength: a randomized controlled study. Evid Based Complement Altern Med 2016:9236809

    Article  Google Scholar 

  19. Borg E, Kaijser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16:57–69

    Article  PubMed  CAS  Google Scholar 

  20. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  PubMed  CAS  Google Scholar 

  21. Glover GH (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1:521–530

    Article  PubMed  CAS  Google Scholar 

  22. Kemmler W, Weineck J, Kalender WA, Engelke K (2004) The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 4:325–334

    PubMed  CAS  Google Scholar 

  23. McAuley E, Konopack JF, Motl RW, Rosengren K, Morris KS (2005) Measuring disability and function in older women: psychometric properties of the late-life function and disability instrument. J Gerontol A 60:901–909

    Article  Google Scholar 

  24. Kemmler W, Bebenek M, von Stengel S, Bauer J (2014) Peak-bone-mass development in young adults: effects of study program related levels of occupational and leisure time physical activity and exercise. A prospective 5-year study. Osteoporos Int 26:653–662

    Article  PubMed  Google Scholar 

  25. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775

    Article  PubMed  CAS  Google Scholar 

  26. Sipila S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78:334–340

    Article  PubMed  CAS  Google Scholar 

  27. Honaker J, King G, Blackwell M (2011) Amelia II: a program for missing data. J Stat Softw 45:1–47

    Article  Google Scholar 

  28. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  29. Schafer I, von Leitner EC, Schon G, Koller D, Hansen H, Kolonko T, Kaduszkiewicz H, Wegscheider K, Glaeske G, van den Bussche H (2010) Multimorbidity patterns in the elderly: a new approach of disease clustering identifies complex interrelations between chronic conditions. PLoS ONE 5:e15941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Englund DA, Kirn DR, Koochek A et al (2017) Nutritional supplementation with physical activity improves muscle composition in mobility-limited older adults, the VIVE2 study: a randomized, double-blind, placebo-controlled trial. J Gerontol A 73:95–101

    Article  Google Scholar 

  31. Balachandran A, Krawczyk SN, Potiaumpai M, Signorile JF (2014) High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: a randomized controlled trial. Exp Gerontol 60:64–71

    Article  PubMed  Google Scholar 

  32. Liao CD, Tsauo JY, Lin LF, Huang SW, Ku JW, Chou LC, Liou TH (2017) Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: a CONSORT-compliant prospective randomized controlled trial. Medicine 96:e7115

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, Katayama M (2012) Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 60:16–23

    Article  PubMed  Google Scholar 

  34. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ (2017) Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc 65:827–832

    Article  PubMed  Google Scholar 

  35. Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, Konig D (2015) Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. Br J Nutr 114:1237–1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rondanelli M, Klersy C, Terracol G et al (2016) Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 103:830–840

    Article  PubMed  CAS  Google Scholar 

  37. Stewart VH, Saunders DH, Greig CA (2014) Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand J Med Sci Sports 24:e1–e10

    Article  PubMed  CAS  Google Scholar 

  38. Machado A, Garcia-Lopez D, Gonzalez-Gallego J, Garatachea N (2010) Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports 20:200–207

    Article  PubMed  CAS  Google Scholar 

  39. Moreira MA, Zunzunegui MV, Vafaei A, da Camara SM, Oliveira TS, Maciel AC (2016) Sarcopenic obesity and physical performance in middle aged women: a cross-sectional study in Northeast Brazil. BMC Public Health 16:43

    Article  PubMed  PubMed Central  Google Scholar 

  40. Waters DL, Hale L, Grant AM, Herbison P, Goulding A (2010) Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders. Osteoporos Int 21:351–357

    Article  PubMed  CAS  Google Scholar 

  41. Kemmler W, von Stengel S (2013) Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging 8:1353–1364

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kemmler W, Teschler M, Von Stengel S (2015) Effekt von Ganzkörper-Elektromyostimulation—“A series of studies”. Osteologie 23:20–29

    Google Scholar 

  43. Kemmler W, Teschler M, Weissenfels A et al (2016) Ganzkörper-Elektromyostimulation und Sarcopenic Obesity. Ergebnisse der randomisierten kontrollierten FORMOsASarcopenic Obesity Studie. Osteologie 25:204–211

    Article  Google Scholar 

  44. Hainaut K, Duchateau J (1992) Neuromuscular electrical stimulation and voluntary exercise. Sports Med 14:100–113

    Article  PubMed  CAS  Google Scholar 

  45. Kirn DR, Reid KF, Hau C, Phillips EM, Fielding RA (2016) What is a clinically meaningful improvement in leg-extensor power for mobility-limited older adults? J Gerontol A 71:632–636

    Article  Google Scholar 

  46. Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 40:4–12

    Article  PubMed  PubMed Central  Google Scholar 

  47. Perera S, Mody SH, Woodman RC, Studenski SA (2006) Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 54:743–749

    Article  PubMed  Google Scholar 

  48. Beaudart C, Reginster JY, Slomian J, Buckinx F, Dardenne N, Quabron A, Slangen C, Gillain S, Petermans J, Bruyere O (2015) Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol 61:31–37

    Article  PubMed  CAS  Google Scholar 

  49. Buckinx F, Reginster JY, Dardenne N, Croisiser JL, Kaux JF, Beaudart C, Slomian J, Bruyere O (2015) Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord 16:60

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, Maier AB (2011) Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr 30:610–615

    Article  PubMed  Google Scholar 

  51. von Stengel S, Kemmler W, Engelke K (2013) Validität von BIA im Vergleich zur DXA bei der Erfassung der Körperzusammensetzung. Dtsch Z Sportmed 62:200

    Google Scholar 

  52. Kemmler W, Teschler M, Weissenfels A, Fröhlich M, Kohl M, von Stengel S (2015) Ganzkörper-Elektromyostimulationst versus HIT-Krafttraining—Effekte auf Körperzusammensetzung und Muskelkraft. Dtsch Z Sportmed 66:321–327

    Article  Google Scholar 

  53. Kemmler W, Schliffka R, Mayhew JL, von Stengel S (2010) Effects of whole-body-electromyostimulation on resting metabolic rate, anthropometric and neuromuscular parameters in the elderly. The training and electrostimulation trial (TEST). J Strength Cond Res 24:1880–1886

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank INKOSPOR (Roth, Germany) for providing the protein supplements for the FranSO Project. We further acknowledge the support of the health sport club “Netzwerk Knochengesundheit e.V.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kemmler.

Ethics declarations

Conflict of interest

Wolfgang Kemmler, Michael Bebenek, Matthias Kohl, Alexandra Grimm, and Simon von Stengel declare that they have no conflict of interest.

Human and Animal Rights

The project was approved by the University Ethics committee of the FAU (Ethikantrag 67_15b) in April 2015 and fully complied with the Helsinki Declaration “Ethical Principles for Medical Research Involving Human Subjects.”

Informed Consent

All study participants gave their written informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemmler, W., Grimm, A., Bebenek, M. et al. Effects of Combined Whole-Body Electromyostimulation and Protein Supplementation on Local and Overall Muscle/Fat Distribution in Older Men with Sarcopenic Obesity: The Randomized Controlled Franconia Sarcopenic Obesity (FranSO) Study. Calcif Tissue Int 103, 266–277 (2018). https://doi.org/10.1007/s00223-018-0424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0424-2

Keywords

Navigation