Skip to main content

Advertisement

Log in

Bone Collagen: New Clues to Its Mineralization Mechanism from Recessive Osteogenesis Imperfecta

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90 % of OI cases. Since then a growing list of mutant genes causing the 5–10 % of recessive cases has rapidly emerged. They include CRTAP, LEPRE1, and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode, respectively, lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPINH1, which encodes the collagen chaperone HSP47; SERPINF1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include overmineralization or undermineralization defects as well as abnormal collagen posttranslational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen posttranslational modification, chaperoning of newly synthesized collagen chains into native molecules, or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking, and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on posttranslational features of bone collagen that have evolved to optimize it as a biomineral template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Glimcher MJ (1960) Specificity of the molecular structure of organic matrices in mineralization. In: Sogannes RF (ed) Calcification in biological systems. American Association for the Advancement of Science, Washington, DC

    Google Scholar 

  2. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282

    Article  CAS  Google Scholar 

  3. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bächinger HP, Pace JM, Schwarze U, Byers PH, Weis MA, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127(2):291–304

    Article  PubMed  CAS  Google Scholar 

  4. Barnes AM, Chang W, Morello R, Cabral WA, Weis MA, Eyre DR, Leikin S, Makareeva E, Kuznetsova N, Uveges TE, Ashok A, Flor AW, Mulvihill JJ, Wilson PL, Sundaram UT, Lee B, Marini JC (2006) Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med 355:2757–2764

    Article  PubMed  CAS  Google Scholar 

  5. Cabral WA, Chang W, Barnes AM, Weis MA, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39(3):359–365

    Article  PubMed  CAS  Google Scholar 

  6. Baldridge D, Schwarze U, Morello R, Lennington J, Bertin TK, Pace JM, Pepin MG, Weis M, Eyre DR, Walsh J, Lambert D, Green A, Robinson H, Michelson M, Houge G, Lindman C, Martin J, Ward J, Lemyre E, Mitchell JJ, Krakow D, Rimoin DL, Cohn DH, Byers PH, Lee B (2008) CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum Mutat 29(12):1435–1442

    Article  PubMed  CAS  Google Scholar 

  7. vanDijk FS, Nesbitt IM, Zwikstra EH, Nikkels PGJ, Piersma SR, Fratantoni SA, Jimenez CR, Huizer M, Morsman AC, Cobben JM, van Roij MHH, Elting MW, Verbeke MIJL, Wijnaendts LCD, Shaw NJ, Högler W, McKeown C, Sistermans EA, Dalton A, Meijers-Jeijboer H, Pals G (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527

    Article  CAS  Google Scholar 

  8. Barnes AM, Carter EM, Cabral WA, Weis MA, Chang W, Makareeva E, Leikin S, Rotimi CN, Eyre DR, Raggio CL, Marini JC (2010) Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med 362:521–528

    Article  PubMed  CAS  Google Scholar 

  9. Drögemüller C, Becker D, Brunner A, Haase B, Kircher P, Seeliger F, Fehr M, Baumann U, Lindblad-Toh K, Leeb T (2009) A missense mutation in the SERPINH1 gene in dachshunds with osteogenesis imperfecta. PLoS Genet 5(7):e1000579

    Article  PubMed  Google Scholar 

  10. Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398

    Article  PubMed  CAS  Google Scholar 

  11. Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJ, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 86:551–559

    Article  PubMed  CAS  Google Scholar 

  12. Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Supert-Furga A, De Paepe A, Lee B (2011) Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 26(3):666–672

    Article  PubMed  CAS  Google Scholar 

  13. Barnes AM, Cabral WA, Weis M, Makareeva E, Merta EL, Leikin S, Eyre D, Trujillo C, Marini JC (2012) Absence of FKBP10 in recessive type XI OI leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix. Hum Mutat 33:1589–1598

    Article  PubMed  CAS  Google Scholar 

  14. Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR, Bank RA, Pals G, Ankala A, Conneely K, Seaver L, Yandow SM, Raney E, Babovic-Vuksanovic D, Stoler J, Ben-Neriah Z, Segel R, Lieberman S, Siderius L, Al-Aqeel A, Hannibal M, Hudgins L, McPherson E, Clemens M, Sussman MD, Steiner RD, Mahan J, Smith R, Anyane-Yeboa K, Wynn J, Chong K, Uster T, Aftimos S, Sutton VR, Davis EC, Kim LS, Weis MA, Eyre D, Byers PH (2013) Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines on bone collagen. Hum Mol Genet 22:1–17

    Article  PubMed  CAS  Google Scholar 

  15. Martinez-Glez V, Valencia M, Caparrós-Martin JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1m/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350

    Article  PubMed  CAS  Google Scholar 

  16. Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigi G, Pohl E, Becker J, Frommolt P, Sonntag C, Altmüller J, Zimmermann K, Greenspan DS, Akarsu NA, Netzer C, Schönau E, Wirth R, Hammerschmidt M, Nürnberg P, Sollnik B, Carney TJ (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90:661–674

    Article  PubMed  CAS  Google Scholar 

  17. Cundy T (2012) Recent advances in osteogenesis imperfecta. Calcif Tissue Int 90:439–449

    Article  PubMed  CAS  Google Scholar 

  18. Vranka JA, Sakai LY, Bächinger HP (2004) Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem 279:23615–23621

    Article  PubMed  CAS  Google Scholar 

  19. Weis MA, Hudson DM, Kim L, Scott M, Wu JJ, Eyre DR (2010) Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly. J Biol Chem 285(4):2580–2590

    Article  PubMed  CAS  Google Scholar 

  20. Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371

    Article  PubMed  CAS  Google Scholar 

  21. Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26:2798–2803

    Article  PubMed  CAS  Google Scholar 

  22. Cho TJ, Lee KE, Lee SK, Song S, Kim K, Jeon D, Lee G, Kim HN, Lee H, Eom HH, Lee Z, Kim O-H, Park WY, Park S, Ikegawa S, Yoo W, Choi I, Kim JW (2012) A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91:343–348

    Article  PubMed  CAS  Google Scholar 

  23. Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eyse P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91:349–357

    Article  PubMed  CAS  Google Scholar 

  24. Ha-Vinh R, Alanay Y, Bank RA, Campos-Xavier AB, Zankl A, Superti-Furga A, Bonafé L (2004) Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet A 131:115–120

    Article  PubMed  Google Scholar 

  25. Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel AF, van der Sluijs HA, Pruijs HE, TeKoppele JM (1999) Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci USA 96:1054–1058

    Article  PubMed  CAS  Google Scholar 

  26. Lapunzina P, Aglan M, Temtamy S, Caparrós-Martin JA, Valencia M, Letón R, Martinez-Glez V, Elhossini R, Arm K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87:110–114

    Article  PubMed  CAS  Google Scholar 

  27. Korvala J, Jüppner H, Mäkitie O, Sochett E, Schnabel D, Mora S, Bartels CF, Warman ML, Deraska D, Cole WG, Hartikka H, Ala-Kokko L, Männikö M (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26

    Article  PubMed  CAS  Google Scholar 

  28. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, Zhong Z, Matthes S, Jacobsen CM, Conlon RA, Brommage R, Liu Q, Mseeh F, Powell DR, Yang QM, Zambrowicz B, Gerrits H, Gossen JA, He X, Bader M, Williams BO, Warman ML, Robling AG (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17(6):684–691

    Article  PubMed  CAS  Google Scholar 

  29. Niyibizi C, Eyre DR (1989) Identification of the cartilage alpha 1(XI) chain in type v collagen from bovine bone. FEBS Lett 242:218–314

    Article  Google Scholar 

  30. Wu JJ, Weis MA, Kim LS, Carter BG, Eyre DR (2009) Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue. J Biol Chem 284:5539–5545

    Article  PubMed  CAS  Google Scholar 

  31. Eyre DR, Weis MA, Wu JJ (2008) Advances in collagen cross-link analysis. Methods 45:65–74

    Article  PubMed  CAS  Google Scholar 

  32. Hanson DA, Eyre DR (1996) Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem 271(43):26508–26516

    Article  PubMed  CAS  Google Scholar 

  33. Kuypers R, Tyler M, Kurth LB, Jenkins ID, Horgan DJ (1992) Identification of the loci of the collagen-associated Ehrlich chromogen in type I collagen confirms its role as a trivalent cross-link. Biochem J 283:129–136

    PubMed  CAS  Google Scholar 

  34. Banse X, Devogelaer JP, Lafosse A, Sims TJ, Grynpas M, Bailey AJ (2002) Cross-link profile of bone collagen correlates with structural organization of trabeculae. Bone 31:70–76

    Article  PubMed  CAS  Google Scholar 

  35. McNab H, Monahan LC (2008) 3-Hydroxypyrroles. In: Jones RA (ed) Chemistry of heterocyclic compounds: pyrroles. Part 2: the synthesis, reactivity, and physical properties of substituted pyrroles, vol 48. Wiley, Hoboken

    Google Scholar 

  36. Kemp PD, Scott JE (1986) Ehrlich chromogens, probable cross-links in elastin and collagen. Biochem J 252:387–393

    Google Scholar 

  37. Bank RA, TeKoppele JM, Janus GJ, Wassen MH, Pruijs HE, Van der Sluijs HA, Sakkers RJ (2000) Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing. J Bone Miner Res 15:1330–1336

    Article  PubMed  CAS  Google Scholar 

  38. Eyre D, Shao P, Weis MA, Steinmann B (2002) The kyphoscoliotic type of Ehlers-Danlos syndrome (type VI): differential effects on the hydroxylation of lysine in collagens I and II revealed by analysis of cross-linked telopeptides from urine. Mol Genet Metab 76:211–216

    Article  PubMed  CAS  Google Scholar 

  39. Rohrbach M, Giunta C (2012) Recessive osteogenesis imperfecta: clinical, radiological and molecular findings. Am J Med Genet 160C:175–189

    Article  PubMed  Google Scholar 

  40. Berg RA, Prockop DJ (1973) The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun 52:115–120

    Article  PubMed  CAS  Google Scholar 

  41. Hudson DM, Kim LS, Weis M, Cohn DH, Eyre DR (2012) Peptidyl 3-hydroxyproline binding properties of type I collagen suggest a function in fibril supramolecular assembly. Biochemistry 51:2417–2424

    Article  PubMed  CAS  Google Scholar 

  42. Schumacher MA, Mizuno K, Bächinger HP (2006) The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J Biol Chem 281:27566–27574

    Article  PubMed  CAS  Google Scholar 

  43. Yang C, Park AC, Davis NA, Russell JD, Kim B, Brand DD, Lawrence MJ, Ge Y, Westphall MS, Coon JJ, Greenspan DS (2012) Comprehensive mass spectrometric mapping of the hydroxylated amino acid residues of the α1(V) collagen chain. J Biol Chem 287:40598–40610

    Article  PubMed  CAS  Google Scholar 

  44. Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini JC, San Antonio JD (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197

    Article  PubMed  CAS  Google Scholar 

  45. Kalamajski S, Oldberg Å (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29:248–253

    Article  PubMed  CAS  Google Scholar 

  46. Ehrlich H, Deutzmann R, Brunner E, Cappellini E, Koon H, Solazzo C, Yang Y, Ashford D, Thomas-Oates J, Lubeck M, Baessmann C, Langrock T, Hoffmann R, Wörheide G, Reitner J, Simon P, Tsurkan M, Ereskovsky AV, Kurek D, Bazhenov VV, Hunoldt S, Mertig M, Vyalikh DV, Molodtsov SL, Kummer K, Worch H, Smetacek V, Collins MJ (2010) Mineralization of the metre-long biosilica structures of glass sponges is template on hydroxylated collagen. Nat Chem 2:1084–1088

    Article  PubMed  CAS  Google Scholar 

  47. Donoghue PCJ, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B Mol Dev Evol 306:278–294

    Article  PubMed  Google Scholar 

  48. Widmer C, Gebauer JM, Brunstein E, Rosenbaum S, Zaucke F, Drögemüller C, Leeb T, Baumann U (2012) Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc Natl Acad Sci USA 109(33):13243–13247

    Article  PubMed  CAS  Google Scholar 

  49. Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R (2002) Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 17:30–38

    Article  PubMed  Google Scholar 

  50. Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin C-J, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609

    Article  PubMed  CAS  Google Scholar 

  51. Uzel MI, Scott IC, Babakhanlou-Chase H, Palamakumbura AH, Pappano WM, Hong H-H, Greenspan DS, Trackman PC (2001) Multiple bone morphogenetic protein 1-related mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J Biol Chem 276:22537–22543

    Article  PubMed  CAS  Google Scholar 

  52. Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SCS, Dawson BC, Baldridge DM, Bainbridge MN, Cohn DH, Blazo M, Robers TT, Brennen F-S, Wu Y, Gibbs RA, Melvin P, Campeau PM, Lee BH (2013) Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res. doi:10.1002/jbmr.1891

  53. Moffatt P, Gaumond M-H, Salois P, Sellin K, Bessette M-C, Godin E, Tambasco de Oliveira P, Atkins GJ, Nanci A, Thomas G (2008) Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res 23:1497–1507

    Article  PubMed  CAS  Google Scholar 

  54. Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29:279–290

    Article  PubMed  CAS  Google Scholar 

  55. Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN (2012) The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 287:33926–33933

    Article  PubMed  CAS  Google Scholar 

  56. Nikdin H, Olsson M-L, Hultenby K, Sugars RV (2012) Osteoadherin accumulates in the predentin towards the mineralization front in the developing tooth. PLoS One 7:1–12

    Article  Google Scholar 

  57. Vanleene M, Porter A, Guillot P-V, Boyde A, Oyen M, Shefelbine S (2012) Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone 50:1317–1323

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Research reported in this publication from the authors’ laboratory was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under awards AR36794 and AR37318. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Eyre.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyre, D.R., Weis, M.A. Bone Collagen: New Clues to Its Mineralization Mechanism from Recessive Osteogenesis Imperfecta. Calcif Tissue Int 93, 338–347 (2013). https://doi.org/10.1007/s00223-013-9723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9723-9

Keywords

Navigation