Skip to main content

Advertisement

Log in

Increased levels of Dickkopf-1 are indicative of Wnt/β-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Higher levels of Dickkopf-1, which is an inhibitor of Wnt/β-catenin bone metabolic pathway, could be indicative of downregulated Wnt system, with possible lower osteoblast activation and higher osteoclast signaling in type 1 diabetes mellitus children and adolescents. Dickkopf-1 could significantly contribute to diabetes osteopathy.

Introduction

Increased fracture risk and elevated Dickkopf-1 levels, which is an inhibitor of Wnt/β-catenin bone metabolic pathway, have been documented in adult patients with type 2 diabetes mellitus (T2D), while no relevant data exist on childhood type 1 diabetes (T1D). Our aim was to study plasma Dickkopf-1 distribution in children and adolescents with T1D and to correlate Dickkopf-1 with metabolic bone markers and bone mineral density (BMD).

Methods

We evaluated 40 children and adolescents with T1D (mean ± SD age 13.04 ± 3.53 years, T1D duration 5.15 ± 3.33 years) and 40 healthy age-matched and gender-matched controls (age 12.99 ± 3.3 years). Dickkopf-1 and bone metabolic markers were measured, while total body and lumbar spine BMD were evaluated with dual-energy X-ray absorptiometry (DXA).

Results

Dickkopf-1 demonstrated a Gaussian distribution, with higher levels in T1D patients (13.56 ± 5.34 vs 11.35 ± 3.76 pmol/L, p = 0.024). Higher values were found in boys and in prepubertal children. Dickkopf-1 correlated positively with osteoprotegerin and fasting glucose in patients, while positive correlation with sclerostin and total soluble receptor activator of nuclear factor-kappaB ligand (s-RANKL) was found in controls. Positive correlations with C-telopeptide cross-links (CTX), osteocalcin, alkaline phosphatase, phosphate, and insulin-like growth factor 1 (IGF1) were documented in both groups. Lumbar spine Z-score was positively associated with Dickkopf-1 in controls, while a negative trend was found in patients.

Conclusions

Higher levels of Dickkopf-1 could indicate a downregulated Wnt/β-catenin system with possible lower osteoblast activation and higher osteoclast signaling in T1D children and adolescents. Dickkopf-1 could possibly be a significant contributor of T1D osteopathy. Future therapies could focus on Wnt/β-catenin metabolic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rakel A, Sheehy O, Rahme E, LeLorier J (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 34:193–205

    Article  PubMed  CAS  Google Scholar 

  2. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 18:427–444

    Article  CAS  Google Scholar 

  3. Khan T, Fraser L (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos 2015:174186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Starup-Linde J (2013) Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol 4:21

    Article  Google Scholar 

  5. Roy B (2013) Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J Diabetes 4:101–113

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yavropoulou MP, Yovos JG (2007) The role of the wnt signaling pathway in osteoblast commitment and differentiation. Hormones 6:279–294

    Article  PubMed  Google Scholar 

  7. Nishimura R, Hata K, Ikeda F, Ichida F, Shimoyama A, Matsubara T, Wada M, Amano K, Yoneda T (2008) Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J Bone Miner Metab 26:203–212

    Article  PubMed  Google Scholar 

  8. Krishnan V, Bryant HU, MacDougald OA (2006) Regulation of bone mass by wnt signaling. J Clin Invest 116:1202–1209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. MacDonald B, Joiner D, Oyserman S, Sharma P, Goldstein S, He X, PV. H (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41:331–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Grotewold L, Ruther U (2002) THe wnt antagonist dickkopf-1 is regulated by bmp signaling and c-Jun and modulates programmed cell death. EMBO J 21:966–975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4:e7930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Balemans W, Piters E, Cleiren E, m A, Van Wesenbeeck L, Warman M, Van Hul W (2008) The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone nass LRP5. Calcif Tissue Int 82:445–453

    Article  PubMed  CAS  Google Scholar 

  13. Gaur T, Lengner CJ, Hovhannisyan H et al (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 Gene expression. J Biol Chem 280:33132–33140

    Article  PubMed  CAS  Google Scholar 

  14. Fowlkes J, Bunn R, Liu L, Wahl E, Coleman H, Cockrell G, Perrien D, Lumpkin CJ, Thrailkill K (2008) Runt-related transcription factor 2 (RUNX2) and RUNX2-related Osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology 149:1697–1704

    Article  PubMed  CAS  Google Scholar 

  15. Portal-Nunez S, Lozano D, de Castro LF, de Gortazar AR, Nogues X, Esbrit P (2010) Alterations of the wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice. FEBS Lett 584:3095–3100

    Article  PubMed  CAS  Google Scholar 

  16. Hie M, Iitsuka N, Otsuka T, Tsukamoto I (2011) Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med 28:455–462

    PubMed  CAS  Google Scholar 

  17. Gaudio A, Privitera F, Pulvirenti I, Canzonieri E, Rapisarda R, Fiore CE (2014) The relationship between inhibitors of the wnt signalling pathway (sclerostin and dickkopf-1) and carotid intima-media thickness in postmenopausal women with type 2 diabetes mellitus. Diabetes & vascular disease research : official journal of the International Society of Diabetes and Vascular Disease 11:48–52

    Article  CAS  Google Scholar 

  18. Garcia-Martin A, Reyes-Garcia R, Garcia-Fontana B, Morales-Santana S, Coto-Montes A, Munoz-Garach M, Rozas-Moreno P, Munoz-Torres M (2014) Relationship of Dickkopf1 (DKK1) with cardiovascular disease and bone metabolism in Caucasian type 2 diabetes mellitus. PLoS One 9:e111703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lattanzio S, Santilli F, Liani R, Vazzana N, Ueland T, Di Fulvio P, Formoso G, Consoli A, Aukrust P, Davi G (2014) Circulating dickkopf-1 in diabetes mellitus: association with platelet activation and effects of improved metabolic control and low-dose aspirin. J Am Heart Assoc 3

  20. Register TC, Hruska KA, Divers J et al (2013) Plasma Dickkopf1 (DKK1) concentrations negatively associate with atherosclerotic calcified plaque in African-Americans with type 2 diabetes. J Clin Endocrinol Metab 98:E60–E65

    Article  PubMed  CAS  Google Scholar 

  21. Qiu F, He J, Zhou Y, Bai X, Wu G, Wang X, Liu Z, Chen Y, Ma JX, Liu Z (2014) Plasma and vitreous fluid levels of dickkopf-1 in patients with diabetic retinopathy. Eye 28:402–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K (2016) Sclerostin distribution in children and adolescents with type 1 diabetes mellitus and correlation with bone metabolism and bone mineral density. Pediatr Diabetes 17:289–299

    Article  PubMed  CAS  Google Scholar 

  23. Tsentidis C, Gourgiotis D, Kossiva L, Doulgeraki A, Marmarinos A, Galli-Tsinopoulou A, Karavanaki K (2016) Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 27:1631–1643

    Article  CAS  Google Scholar 

  24. Gustafson B, Eliasson B, Smith U (2010) Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia 53:536–540

    Article  PubMed  CAS  Google Scholar 

  25. Ahmed SF, Fouda N, Abbas AA (2013) Serum dickkopf-1 level in postmenopausal females: correlation with bone mineral density and serum biochemical markers. J Osteoporos 2013:460210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Anastasilakis AD, Polyzos SA, Avramidis A, Toulis KA, Papatheodorou A, Terpos E (2010) The effect of teriparatide on serum dickkopf-1 levels in postmenopausal women with established osteoporosis. Clin Endocrinol 72:752–757

    Article  CAS  Google Scholar 

  27. Voskaridou E, Christoulas D, Xirakia C, Varvagiannis K, Boutsikas G, Bilalis A, Kastritis E, Papatheodorou A, Terpos E (2009) Serum dickkopf-1 is increased and correlates with reduced bone mineral density in patients with thalassemia-induced osteoporosis. Reduction post-zoledronic acid administration Haematologica 94:725–728

    PubMed  CAS  Google Scholar 

  28. Brunetti G, Faienza M, Piacente L et al (2013) High dickkopf-1 levels in sera and leukocytes from children with 21-hydroxylase deficiency on chronic glucocorticoid treatment. Am J Physiol Endocrinol Metab 304:E546–E554

    Article  PubMed  CAS  Google Scholar 

  29. Mak W, Shao X, Dunstan C, Seibel M, Zhou H (2009) Biphasic glucocorticoid-dependent regulation of wnt expression and its inhibitors in mature osteoblastic cells. Calcif Tissue Int 85:538–545

    Article  PubMed  CAS  Google Scholar 

  30. Butler JS, Queally JM, Devitt BM, Murray DW, Doran PP, O’Byrne JM (2010) Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. BMC Musculoskelet Disord 11:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sottnik JL, Hall CL, Zhang J, Keller ET (2012) Wnt and wnt inhibitors in bone metastasis. BoneKEy reports 1:101

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hameed A, Brady JJ, Dowling P, Clynes M, O’Gorman P (2014) Bone disease in multiple myeloma: pathophysiology and management. Cancer growth and metastasis 7:33–42

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tsentidis.

Ethics declarations

Conflicts of interest

None.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsentidis, C., Gourgiotis, D., Kossiva, L. et al. Increased levels of Dickkopf-1 are indicative of Wnt/β-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporos Int 28, 945–953 (2017). https://doi.org/10.1007/s00198-016-3802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3802-5

Keywords

Navigation