Skip to main content

Advertisement

Log in

Serum tartrate-resistant acid phosphatase 5b in monitoring bisphosphonate treatment with clodronate: a comparison with urinary N-terminal telopeptide of type I collagen and serum type I procollagen amino-terminal propeptide

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Osteoclastic tartrate-resistant acid phosphatase activity in serum (S-TRACP 5b) was measured in postmenopausal women ( n =59, mean age 56.1 years) with vertebral osteopenia before and during 2-year treatment with an 800-mg daily dose of clodronate, with a non-amino bisphosphonate. Changes in TRACP 5b were compared with those in urinary excretion of type I collagen amino-terminal telopeptide (U-NTX), corrected for creatinine excretion, a well-established marker of bone resorption, and to serum type I procollagen amino-terminal propeptide (S-PINP), a marker of bone formation. Marker changes 1 year after start of treatment were correlated with changes in bone mineral density (BMD). The least significant change (LSC) for each marker and BMD was calculated from values for subjects receiving placebo. Responders to treatment were those exhibiting a change larger than LSC. In response to clodronate treatment S-TRACP 5b (mean change up to −18%) decreased less than did U-NTX (up to −51%) or S-PINP (up to −46%). Marker changes correlated with changes in lumbar spine and trochanter BMD. The most efficient marker for finding responders to treatment was S-PINP, which changed more than the LSC (32%) in 72% of the subjects at the 1-year time point and in 79% at the 2-year time point. S-TRACP 5b change exceeded the LSC (27%) in 40% and 34% of the subjects at each time point, while U-NTX change exceeded the LSC (55%) in 55% and 40%, respectively. We conclude that, in terms of the proportion of subjects exhibiting any change exceeding the LSC, S-TRACP 5b did not appear to be superior to U-NTX and S-PINP in the follow-up of clodronate treatment. The reason may lie in the mechanism of action of clodronate, which rather than reducing the number of TRACP 5b-secreting osteoclasts, reduces the activity of bone proteolytic enzymes and thus the rate of bone organic matrix degradation. This is seen in decreased amounts of type I collagen breakdown products (U-NTX), and through coupling of bone resorption with bone formation, in a decrease in circulating levels of the marker that reflects new collagen formation (S-PINP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Beta-isomerized form of the cross-link region peptide from the type I collagen carboxy-terminal telopeptide

  2. The alpha-isomerized form of CTX

  3. Cross-linked carboxy-terminal telopeptide of type I collagen produced by matrix metalloproteinases

References

  1. Risteli L, Risteli J (1993) Biochemical markers of bone metabolism. Ann Med 25:385–393

    CAS  PubMed  Google Scholar 

  2. Blumsohn A, Eastell R (1997) The performance and utility of biochemical markers of bone turnover: do we know enough to use them in clinical practice? Ann Clin Biochem 34:449–459

    PubMed  Google Scholar 

  3. Seibel MJ (2000) Molecular markers of bone turnover: Biochemical, technical and analytical aspects. Osteoporos Int 10 [Suppl 6]:S18–29

    Google Scholar 

  4. Hannon R, Blumsohn A, Naylor K, Eastell R (1998) Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 13:1124–1133

    CAS  PubMed  Google Scholar 

  5. Melton LJ 3rd, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12:1083–1091

    PubMed  Google Scholar 

  6. Garnero P, Dargent-Molina P, Hans D, Schott AM, Bréart G, Meunier PJ, Delmas PD (1998) Do markers of bone resorption add to bone mineral density and ultrasonographic heel measurement for the prediction of hip fracture in elderly women? The EPIDOS prospective study. Osteoporos Int 8:563–569

    Article  CAS  PubMed  Google Scholar 

  7. Bauer DC, Sklarin PM, Stone KL, Black DM, Nevitt MC, Ensrud KE, Arnaud CD, Genant HK, Garnero P, Delmas PD, Lawaetz H, Cummings SR for the study of osteoporotic fractures research group (1999) Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res 14:1404–1410

    CAS  PubMed  Google Scholar 

  8. Marcus R, Holloway L, Wells B, Greendale G, James MK, Wasilauskas C, Kelaghan J (1999) The relationship of biochemical markers of bone turnover to bone density changes in postmenopausal women: results from the Postmenopausal Estrogen/Progestin Interventions (PEPI) trial. J Bone Miner Res 14:1583–1595

    CAS  PubMed  Google Scholar 

  9. Rosen CJ, Chesnut CH 3rd, Mallinak NJS (1997) The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 82:1904–1910

    Google Scholar 

  10. Greenspan SL, Parker RA, Ferguson L, Rosen HN, Maitland-Ramsay L, Karpf DB (1998) Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res 13:1431–1438

    CAS  PubMed  Google Scholar 

  11. Ravn P, Hosking D, Thompson D, Cizza G, Wasnich RD, McClung M et al (1999) Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 84:2363–2368

    Google Scholar 

  12. Hassager C, Risteli J, Risteli L, Jensen SB, Christiansen (1992) Diurnal variation in serum markers of type I collagen synthesis and degradation in healthy premenopausal women. J Bone Miner Res 7:1307–1311

    CAS  PubMed  Google Scholar 

  13. Blumsohn A, Herrington K, Hannon RA, Shao P, Eyre DR, Eastell R (1994) The effect of calcium supplementation on the circadian rhythm of bone resorption. J Clin Endocrinol Metab 79:730–735

    Google Scholar 

  14. Panthegini M, Pagani F (1996) Biological variation in urinary excretion of pyridinium crosslinks: recommendations for the optimum specimen. Ann Clin Biochem 33:36–42

    PubMed  Google Scholar 

  15. Woitge HW, Pecherstorfer M, Li Y, Keck A-V, Horn E, Ziegler R, Seibel M (1999) Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res 14:792–801

    CAS  PubMed  Google Scholar 

  16. Rosen HN, Moses AC, Garber J, Iloputaife ID, Ross DS, Lee SL, Greenspan SL (2000) Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int 66:100–103

    CAS  PubMed  Google Scholar 

  17. Christgau S, Bitsch-Jensen O, Hanover Bjarnason N, Gamwell Henriksen E, Qvist P, Alexandersen P, Bang Henriksen D (2000) Serum CrossLaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone 26:505–511

    CAS  PubMed  Google Scholar 

  18. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30:886–890

    Article  CAS  PubMed  Google Scholar 

  19. Prockop DJ, Kivirikko KI, Tuderman L, Guzman RA (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301:13–23, 77–85

    CAS  PubMed  Google Scholar 

  20. Smedsrod B, Melkko J, Risteli L, Risteli J (1990) Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 271:345–350

    Google Scholar 

  21. Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrod B (1994) Clearance of the amino-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 179:405–412

    CAS  PubMed  Google Scholar 

  22. Blom E, Ali MM, Mortensen B, Huseby NE (1998) Elimination of alkaline phosphatases from circulation by the galactose receptor. Different isoforms are cleared at various rates. Clin Chim Acta 270:125–136

    CAS  PubMed  Google Scholar 

  23. Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290

    CAS  PubMed  Google Scholar 

  24. Clark SA, Ambrose WW, Anderson TR, Terrell RS, Toverud SU (1989) Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry. J Bone Miner Res 5:399–405

    Google Scholar 

  25. Andersson G, Ek-Rylander B (1995) The tartrate-resistant purple acid phosphatase of bone osteoclasts—a protein phosphatase with multivalent substrate specificity and regulation. Acta Orthop Scand 66 [Suppl 266]:189–194

    Google Scholar 

  26. Halleen JM, Kaija H, Stepan JJ, Vihko P, Väänänen HK (1998) Studies on the protein tyrosine phosphatase activity of tartrate-resistant acid phosphatase. Arch Biochem Biophys 352:97–102

    CAS  PubMed  Google Scholar 

  27. Halleen JM, Räisänen S, Salo JJ, Reddy SV, Roodman GD, Hentunen TA et al (1999) Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem 274:22907–22910

    CAS  PubMed  Google Scholar 

  28. Lam KW, Eastlund DT, Li CY, Yam LT (1978) Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem 24:1105–1108

    CAS  PubMed  Google Scholar 

  29. Halleen JM, Alatalo SA, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    CAS  PubMed  Google Scholar 

  30. Hannon RA, Clowes JA, Eagleton AC, Al Hadari A, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194

    CAS  PubMed  Google Scholar 

  31. Välimäki MJ, Laitinen K, Patronen A, Puolijoki H, Seppänen J, Pylkkänen L et al for the Probone Study Group (2002) Prevention of bone loss by clodronate in early postmenopausal women with vertebral osteopenia: a dose-finding study. Osteoporos Int 13:937–947

    PubMed  Google Scholar 

  32. Garnero P, Hih WJ, Gineyts E, Karpf DB, Delmas PD (1994) Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 79:1693–1700

    Article  CAS  PubMed  Google Scholar 

  33. Dominguez Cabrera C, Sosa Henriques M, Traba ML, Alvarez Villafane E, de la Piedra C (1998) Biochemical markers of bone formation in the study of postmenopausal osteoporosis. Osteoporos Int 8:147–151

    PubMed  Google Scholar 

  34. Peris P, Alvarez L, Monegal A, Guanabens N, Duran M, Pons F et al (1999) Biochemical markers of bone turnover after surgical menopause and hormone replacement therapy. Bone 25:349–353

    CAS  PubMed  Google Scholar 

  35. Halleen JM, Alatalo SA, Janckila AJ, Woitge HW, Seibel MJ, Väänänen HK (2001) Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem 47:597–600

    CAS  PubMed  Google Scholar 

  36. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Mönkkönen J, Frith JC (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88:2961–2978

    Article  CAS  PubMed  Google Scholar 

  37. Selander KS, Mönkkönen J, Karhukorpi EK, Härkönen P, Hannuniemi R, Väänänen HK (1996) Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol 50:1127–1138

    CAS  PubMed  Google Scholar 

  38. Lehenkari PP, Kellinsalmi M, Napankangas JP, Ylitalo KV, Mönkkönen J, Rogers MJ et al (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61:1255–1262

    Article  CAS  PubMed  Google Scholar 

  39. Teronen O, Heikkilä P, Konttinen YT, Laitinen M, Salo T, Hanemaaijer R et al (1999) MMP inhibition and downregulation by bisphosphonates. Ann N Y Acad Sci 878:453–465

    CAS  PubMed  Google Scholar 

  40. Halasy-Nagy JM, Rodan GA, Reszka AA (2001) Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone 29:553–559

    Article  CAS  PubMed  Google Scholar 

  41. Stepan JJ, Burckhardt P (2002) Serum activity of type 5b ACP and biochemical markers of type I collagen degradation in osteoporotic men with Klinefelter’s syndrome treated with intravenous ibandronate. Calcif Tissue Int 70:279, P78

    Google Scholar 

  42. Hofbauer LC, Khosla S, Dunstan CR, Lacey D, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    CAS  PubMed  Google Scholar 

  43. Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci U S A 97:7829–7834

    CAS  PubMed  Google Scholar 

  44. Stepan JJ, Vokrouhlicka J (1999) Comparison of biochemical markers of bone remodelling in the assessment of the effects of alendronate on bone in postmenopausal osteoporosis. Clin Chim Acta 288:121–135

    CAS  PubMed  Google Scholar 

  45. Garnero P, Gineyts E, Arbault P, Christiansen C, Delmas PD (1995) Different effects of bisphosphonate and estrogen therapy on free and peptide-bound bone cross-links excretion. J Bone Miner Res 10:641–649

    CAS  PubMed  Google Scholar 

  46. Bjarnason NH, Sarkar S, Duong T, Mitlak B, Delmas PD, Christiansen C (2001) Six and 12-month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int 12:922–930

    Article  CAS  PubMed  Google Scholar 

  47. Bauer DC, Black DM, Garnero P, Hochberg M, Ott S, Orloff J, Thompson DE, Ewing SK, Delmas PD, The Fracture Intervention Trial Study Group (2004) Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: The Fracture Intervention Trial. J Bone Miner Res 19:1250–1258

    PubMed  Google Scholar 

  48. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18:1051–1056

    CAS  PubMed  Google Scholar 

  49. Li Z, Meredith MP, Hoseyni MS (2002) A method to assess the proportion of treatment effect explained by a surrogate endpoint. Stat Med 20:3175–3188

    Article  Google Scholar 

  50. McCloskey E, Selby P, Davies M, Robinson J, Francis RM, Adams J, Kayan K, Beneton M, Jalava T, Pylkkanen L, Kenraali J, Aropuu S, Kanis JA (2004) Clodronate reduces vertebral fracture risk in women with postmenopausal or secondary osteoporosis: results of a double-blind, placebo-controlled 3-year study. J Bone Miner Res 19:728–736

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Suomen Bioanalytiikka Oy for providing us with reagents for TRACP 5b measurement

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riitta Tähtelä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tähtelä, R., Seppänen, J., Laitinen, K. et al. Serum tartrate-resistant acid phosphatase 5b in monitoring bisphosphonate treatment with clodronate: a comparison with urinary N-terminal telopeptide of type I collagen and serum type I procollagen amino-terminal propeptide. Osteoporos Int 16, 1109–1116 (2005). https://doi.org/10.1007/s00198-004-1819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1819-7

Keywords

Navigation