Skip to main content
Log in

Künstliche Intelligenz in der modernen Mammadiagnostik

Artificial intelligence in modern breast diagnostics

  • Leitthema
  • Published:
Die Gynäkologie Aims and scope

Zusammenfassung

Der Einsatz künstlicher Intelligenz (KI) wird derzeit in verschiedenen Bereichen der Medizin erforscht. In der Mammadiagnostik ist die Verwendung KI-gestützter Systeme bereits heute Realität, insbesondere in der Früherkennung. Dadurch wird erhofft, die Abläufe zu vereinfachen und den Untersucher durch eine automatisierte Einschätzung von Brustdichte und Malignitätsrisiko zu unterstützen. In der Mammasonographie wird der Einsatz der KI vor allem bei der automatisierten Sonographie (ABUS) untersucht. Auch eine Dignitätseinschätzung einer vom Untersucher angegebenen „region of interest“ auf dem B‑Bild wird durch die modernen Systeme ermöglicht. Darüber hinaus konnte die KI in der Magnetresonanztomographie (MRT) der Mamma zur Entwicklung eines hilfreichen Algorithmus beitragen. Der sog. Kaiser-Score steht dem Radiologen online zur Verfügung und hilft, das Malignitätsrisiko von MRT-Befunden einzuschätzen.

Abstract

The use of artificial intelligence (AI) is currently under investigation in various fields of medicine. In breast diagnostics the use of AI-guided systems is already reality, especially in the screening setting. It is hoped that in this way the workflow can be simplified and the radiologist can be supported through automatic assessment of the breast density and the risk of malignancy. The use of AI in breast ultrasound focuses mainly on automated breast ultrasound (ABUS). An estimation of the dignity of a region of interest selected by the investigator on a B-mode picture is also possible using modern systems. Furthermore, in magnetic resonance imaging (MRI) of the breast AI could contribute to the development of a useful algorithm. The so-called Kaiser score is available online for radiologists and helps to estimate the risk of malignancy from MRI findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Mammakarzinoms, Version 4.4, AWMF Registernummer: 032-045OL, http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/. 2021.

  2. Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ (2019) Artificial intelligence in breast imaging. Clin Radiol 74(5):357–366

    Article  CAS  Google Scholar 

  3. Evans A, Vinnicombe S (2017) Overdiagnosis in breast imaging. Breast 31:270–273

    Article  Google Scholar 

  4. Elmore JG, Jackson SL, Abraham L, Miglioretti DL, Carney PA, Geller BM, Yankaskas BC, Kerlikowske K, Onega T, Rosenberg RD et al (2009) Variability in interpretive performance at screening mammography and radiologists’ characteristics associated with accuracy. Radiology 253(3):641–651

    Article  Google Scholar 

  5. Patel AK (2021) Breast radiology advocacy: responding to the call-to-action. Radiol Clin North Am 59(1):13–17

    Article  Google Scholar 

  6. Bennani-Baiti B, Baltzer PAT (2020) Künstliche Intelligenz in der Mammadiagnostik: Gestern, heute und morgen. Radiologe 60(1):56–63

    Article  CAS  Google Scholar 

  7. Roehrig J, Doi T, Hasegawa A, Hunt B, Marschall J, Romsdahl H, Schneider A, Sharbaugh R, Zhang W (1998) Clinical results with R2 imagechecker system. In: Karssemeijer N, Thijssen M, Hendriks J, van Erning L (Hrsg) Digital mammography. Computational imaging and vision, Bd. 13. Springer, Dordrecht

    Google Scholar 

  8. Baltzer PAT (2021) Künstliche Intelligenz in der Mammadiagnostik. Radiologe 61:192–198

    Article  Google Scholar 

  9. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL, Breast Cancer Surveillance C (2015) Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 175(11):1828–1837

    Article  Google Scholar 

  10. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236–248

    Article  Google Scholar 

  11. Schaffter T, Buist DSM, Lee CI, Nikulin Y, Ribli D, Guan Y, Lotter W, Jie Z, Du H, Wang S et al (2020) Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open 3(3):e200265

    Article  Google Scholar 

  12. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T et al (2019) Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 111(9):916–922

    Article  Google Scholar 

  13. Sechopoulos I, Teuwen J, Mann R (2021) Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art. Semin Cancer Biol 72:214–225

    Article  Google Scholar 

  14. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94

    Article  CAS  Google Scholar 

  15. Byng D, Strauch B, Gnas L, Leibig C, Stephan O, Bunk S, Hecht G (2022) AI-based prevention of interval cancers in a national mammography screening program. Eur J Radiol 152:110321

    Article  Google Scholar 

  16. Kozegar E, Soryani M, Behnam H, Salamati M, Tan T (2020) Computer aided detection in automated 3‑D breast ultrasound images: a survey. Artif Intell Rev 53(3):1919–1941

    Article  Google Scholar 

  17. Rella R, Belli P, Giuliani M, Bufi E, Carlino G, Rinaldi P, Manfredi R (2018) Automated breast ultrasonography (ABUS) in the screening and diagnostic setting: indications and practical use. Acad Radiol 25(11):1457–1470

    Article  Google Scholar 

  18. Meng Z, Chen C, Zhu Y, Zhang S, Wei C, Hu B, Yu L, Hu B, Shen E (2015) Diagnostic performance of the automated breast volume scanner: a systematic review of inter-rater reliability/agreement and meta-analysis of diagnostic accuracy for differentiating benign and malignant breast lesions. Eur Radiol 25(12):3638–3647

    Article  Google Scholar 

  19. An YY, Kim SH, Kang BJ (2015) The image quality and lesion characterization of breast using automated whole-breast ultrasound: a comparison with handheld ultrasound. Eur J Radiol 84(7):1232–1235

    Article  Google Scholar 

  20. Jeh SK, Kim SH, Choi JJ, Jung SS, Choe BJ, Park S, Park MS (2016) Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions. Acta Radiol 57(2):162–169

    Article  Google Scholar 

  21. Chang JM, Moon WK, Cho N, Park JS, Kim SJ (2011) Radiologists’ performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS). Eur J Radiol 78(1):99–103

    Article  Google Scholar 

  22. Brem RF, Tabar L, Duffy SW, Inciardi MF, Guingrich JA, Hashimoto BE, Lander MR, Lapidus RL, Peterson MK, Rapelyea JA et al (2015) Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology 274(3):663–673

    Article  Google Scholar 

  23. Giuliano V, Giuliano C (2013) Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging 37(3):480–486

    Article  Google Scholar 

  24. Kelly KM, Dean J, Comulada WS, Lee S‑J (2010) Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 20(3):734–742

    Article  Google Scholar 

  25. Wilczek B, Wilczek HE, Rasouliyan L, Leifland K (2016) Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol 85(9):1554–1563

    Article  Google Scholar 

  26. Hatzipanagiotou ME, Huber D, Gerthofer V, Hetterich M, Ripoll BR, Ortmann O, Seitz S (2022) Feasibility of ABUS as an alternative to handheld ultrasound for response control in neoadjuvant breast cancer treatment. Clin Breast Cancer 22(2):e142–e146

    Article  Google Scholar 

  27. Nicosia L, Addante F, Bozzini AC, Latronico A, Montesano M, Meneghetti L, Tettamanzi F, Frassoni S, Bagnardi V, De Santis R et al (2022) Evaluation of computer-aided diagnosis in breast ultrasonography: improvement in diagnostic performance of inexperienced radiologists. Clin Imaging 82:150–155

    Article  Google Scholar 

  28. Wu JY, Zhao ZZ, Zhang WY, Liang M, Ou B, Yang HY, Luo BM (2019) Computer-aided diagnosis of solid breast lesions with ultrasound: factors associated with false-negative and false-positive results. J Ultrasound Med 38(12):3193–3202

    Article  Google Scholar 

  29. Dietzel M, Baltzer PAT (2018) How to use the Kaiser score as a clinical decision rule for diagnosis in multiparametric breast MRI: a pictorial essay. Insights Imaging 9(3):325–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggie Banys-Paluchowski.

Ethics declarations

Interessenkonflikt

M. Banys-Paluchowski erhielt Honorare für Vorträge und Teilnahme an Advisory Boards von: Roche, Novartis, Pfizer, pfm, Eli Lilly, Onkowissen, Seagen, AstraZeneca, Eisai, AstraZeneca, Amgen, Samsung, MSD, GSK, Daiichi Sankyo, Gilead, Sirius Pintuition, Pierre Fabre, sowie Studienunterstützung von: EndoMag, Mammotome, MeritMedical. L. Dussan Molinos, M. Rübsamen, T. Töllner, A. Rody, T. Fehm, N. Bündgen und N. Krawczyk haben keine potenziellen Interessenkonflikte angegeben.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Jan Weichert, Lübeck

Ulrich Gembruch, Bonn

Klaus Diedrich, Lübeck

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banys-Paluchowski, M., Dussan Molinos, L., Rübsamen, M. et al. Künstliche Intelligenz in der modernen Mammadiagnostik. Gynäkologie 55, 771–782 (2022). https://doi.org/10.1007/s00129-022-04997-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-022-04997-4

Schlüsselwörter

Keywords

Navigation