Skip to main content
Log in

Hat die extrakorporale Stoßwellenlithotripsie noch einen Stellenwert?

What is the current status of shock wave lithotripsy?

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Nach der Einführung der extrakorporalen Stoßwellenlithotripsie (ESWL) Anfang der 1980er-Jahre wurde diese relativ schnell die Therapie der Wahl für Harnsteinpatienten. Heutzutage ist die ESWL immer noch die einzige nicht-invasive Therapieform für Harnsteine jeglicher Lokalisation. Neue multifunktionale Lithotripter haben diese Technik weltweit erhältlich gemacht, allerdings hat sich die Indikationsstellung ebenfalls gewandelt. Durch den rasanten technischen Fortschritt in der Endourologie einhergehend mit hohen Steinfreiheitsraten und durch veränderte Abrechnungsmodalitäten ist die ESWL in den westlichen Industrieländern im letzten Jahrzehnt eher ins Hintertreffen geraten. Nichtsdestotrotz wird die ESWL in den gängigen Leitlinien immer noch als ebenbürtige Erstlinientherapieoption für Konkremente in den meisten Lokalisationen im Harntrakt geführt.

Ziel der Arbeit

In dieser Übersichtsarbeit wird der aktuelle Stellenwert der ESWL für die Therapie von Harnsteinen anhand der technischen Neuerungen der letzten Jahre und veränderter Therapieregimes in Zusammenschau mit den aktuellen Leitlinienempfehlungen beleuchtet.

Ergebnisse

Technische Fortschritte wie verschiedene Energiequellenkonzepte, Stoßwellengenerierung und Fokussierung sowie Fortschritte in der Steinlokalisierung werden erörtert. Außerdem werden Versuche, die Effizienz der ESWL zu steigern, aufgezeigt und verschiedene Therapieregimes besprochen.

Schlussfolgerung

Ein besseres Verständnis der Pathophysiologie und Physik von Stoßwellen könnte dem Anwender helfen, zukünftig bessere Therapieergebnisse zu erzielen. Dies könnte die ESWL in Zeiten des rasanten Fortschritts in der Endourologie wieder erstarken lassen.

Abstract

Background

Shock wave lithotripsy (SWL) became the therapy of choice for the majority of patients with urolithiasis early after its introduction in the early 1980s. Since then, SWL remains the only noninvasive therapy modality for the treatment of urinary stones. Although lithotripters became more versatile and affordable—making them available worldwide—indications for SWL have shifted as well. In most western countries, endoscopic techniques took the lead in stone therapy due to high (early) stone-free and better reimbursement rates. Notwithstanding SWL remains the first-line therapy for most intrarenal and many ureteral stones.

Purpose

This contemporary review illuminates technical aspects and improvements of lithotripsy over recent years in context with the current guideline recommendations.

Results

Technical advances in lithotripsy such as shock wave generation, focusing, coupling, stone localization and modifications in therapy regimens are reviewed and presented.

Conclusions

Urologists are recommended to carefully select the appropriate therapy modality for a patient with urolithiasis. A more comprehensive understanding of the physics of shock waves could lead to much better results, thus, endorsing SWL as first-line therapy for urolithiasis instead of contemporary endourology treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aboumarzouk OM, Kata SG, Keeley FX et al (2011) Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst Rev. doi:10.1002/14651858.cd006029.pub3

    Google Scholar 

  2. Chaussy C, Brendel W, Schmiedt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268

    Article  CAS  PubMed  Google Scholar 

  3. Chaussy C, Schmiedt E, Jocham D et al (1982) First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol 127:417–420

    Article  CAS  PubMed  Google Scholar 

  4. De Sio M, Autorino R, Quarto G et al (2007) A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter. BJU Int 100:1137–1141

    PubMed  Google Scholar 

  5. Evan AP, Mcateer JA, Connors BA et al (2008) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 101:382–388

    Article  PubMed  Google Scholar 

  6. Granz B, Kohler G (1992) What makes a shock wave efficient in lithotripsy? J Stone Dis 4:123–128

    CAS  PubMed  Google Scholar 

  7. Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51:1680–1686 (discussion 1686–1687)

    Article  PubMed  Google Scholar 

  8. Knoll T, Bach T, Humke U et al (2016) S2k guidelines on diagnostics, therapy and metaphylaxis of urolithiasis (AWMF 043/025): Compendium. Urologe A 55:904–922

    Article  CAS  PubMed  Google Scholar 

  9. Krambeck AE, Rule AD, Li X et al (2011) Shock wave lithotripsy is not predictive of hypertension among community stone formers at long-term followup. J Urol 185:164–169

    Article  PubMed  Google Scholar 

  10. Lingeman JE, Matlaga BR, Evan AP (2007) Surgical management of urinary Lithiasis. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA (Hrsg) Campbell’s-Walsh Urology. Saunders, Philadelphia, S 1431–1507

    Google Scholar 

  11. Lokhandwalla M, Sturtevant B (2000) Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45:1923–1940

    Article  CAS  PubMed  Google Scholar 

  12. Maxwell AD, Cunitz BW, Kreider W et al (2015) Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol 193:338–344

    Article  PubMed  Google Scholar 

  13. May PC, Kreider W, Maxwell AD et al (2017) Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging. J Endourol. doi:10.1089/end.2017.0202

    PubMed  Google Scholar 

  14. Munver R, Delvecchio FC, Kuo RL et al (2002) In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. J Urol 167:327–334

    Article  CAS  PubMed  Google Scholar 

  15. Neisius A, Lipkin ME, Rassweiler JJ et al (2015) Shock wave lithotripsy: the new phoenix? World J Urol 33:213–221

    Article  PubMed  Google Scholar 

  16. Neisius A, Smith NB, Sankin G et al (2014) Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proc Natl Acad Sci USA 111:E1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neisius A, Wollner J, Thomas C et al (2013) Treatment efficacy and outcomes using a third generation shockwave lithotripter. BJU Int 112:972–981

    Article  PubMed  Google Scholar 

  18. Pishchalnikov YA, Neucks JS, Vonderhaar RJ et al (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 176:2706–2710

    Article  PubMed  PubMed Central  Google Scholar 

  19. Preminger GM (1989) Sonographic piezoelectric Lithotripsy: more bang for your buck. J Endourol 3:321–327

    Article  Google Scholar 

  20. Rassweiler JJ, Knoll T, Kohrmann KU et al (2011) Shock wave technology and application: an update. Eur Urol 59:784–796

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scales CD Jr., Smith AC, Hanley JM et al (2012) Prevalence of kidney stones in the United States. Eur Urol 62:160–165

    Article  PubMed  PubMed Central  Google Scholar 

  22. Semins MJ, Trock BJ, Matlaga BR (2008) The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 179:194–197 (discussion 197)

    Article  PubMed  Google Scholar 

  23. Sheir KZ, El-Diasty TA, Ismail AM (2005) Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. BJU Int 95:389–393

    Article  PubMed  Google Scholar 

  24. Tailly GG, Tailly-Cusse MM (2014) Optical coupling control: an important step toward better shockwave lithotripsy. J Endourol 28:1368–1373

    Article  PubMed  Google Scholar 

  25. Türk C, Neisius A, Petrik A et al (2017) EAU Guidlines on Urolithiasis. https://uroweb.org/guideline/urolithiasis/. Zugegriffen: 27.07.2017

  26. Wiesenthal JD, Ghiculete D, D’A Honey RJ et al (2010) Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res 38:307–313

    Article  PubMed  Google Scholar 

  27. Xi X, Zhong P (2000) Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Ultrasound Med Biol 26:457–467

    Article  CAS  PubMed  Google Scholar 

  28. Zhong P (2013) Shock wave Lithotripsy. In: Delale CF (Hrsg) Bubble dynamics & shock waves. Springer, Berin Heidelberg, S 291–338

    Chapter  Google Scholar 

  29. Zhong P, Zhou Y, Zhu S (2001) Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med Biol 27:119–134

    Article  CAS  PubMed  Google Scholar 

  30. Zilberman DE, Ferrandino MN, Preminger GM et al (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184:2354–2359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neisius.

Ethics declarations

Interessenkonflikt

A. Neisius gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neisius, A. Hat die extrakorporale Stoßwellenlithotripsie noch einen Stellenwert?. Urologe 56, 1147–1157 (2017). https://doi.org/10.1007/s00120-017-0470-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-017-0470-9

Schlüsselwörter

Keywords

Navigation