Skip to main content
Log in

Neue β‑Laktam-Antibiotika und β‑Laktamase-Inhibitoren gegen multiresistente Gram-negative Erreger

New β‑lactam antibiotics and β‑lactamase inhibitors against multidrug-resistant Gram-negative bacteria

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die rasche Zunahme multiresistenter Gram-negativer Erreger (MRGN) ist ein drängendes und weitgehend ungelöstes globales Problem. Die Behandlungsoptionen bei diesen Erregern sind sehr stark eingeschränkt. Nur wenige neue Substanzen sind zugelassen worden oder befinden sich aktuell in klinischen Phase-II/III-Studien.

Ziel der Arbeit

Übersichtliche Vorstellung der bislang vorliegenden Daten zu den neuen β‑Laktam-Antibiotika und β‑Laktamase-Inhibitor-Kombinationen. Die neuen Makrolide, Ketolide und Aminoglykoside werden nicht adressiert.

Material und Methoden

Selektive Literaturrecherche zu den Substanzen Ceftazidim/Avibactam, Ceftolozan/Tazobactam, Imipenem/Cilastatin + Relebactam, Meropenem/Vaborbactam, Aztreonam/Avibactam und Cefiderocol unter Einbeziehung aktuell registrierter Studien mit klinischer Auswertung und Datenanalyse.

Ergebnisse

Die Entwicklung neuer Substanzen zur Therapie von Infektionen durch MRGN eröffnet neue Optionen bei Infektionen durch besonders schwierig zu behandelnde Erreger, insbesondere Erreger, die Carbapenemasen vom Klebsiella-pneumoniae-Carbapenemase (KPC) und OXA-48-Typ bilden. β‑Laktamase-Bildner werden durch die neuen Substanzen oder Kombinationen unterschiedlich stark gehemmt; allerdings fehlen noch immer ausreichende Therapieoptionen für Metallo-β-Laktamase-Bildner sowie Infektionen durch multiresistente Pseudomonas-aeruginosa- und Acinetobacter-spp.-Stämme.

Schlussfolgerung

Vielfach sind die klinischen Daten noch indifferent und stammen aus uneinheitlich definierten Patientenkollektiven. Direkte Vergleiche mit etablierten Behandlungsstrategien wie dem „Last-resort-Einsatz“ von Polymyxinen sind kaum möglich. Leider sind auch bereits Fälle einer raschen Resistenzentwicklung beschrieben. Der Stellenwert der Toxizität und optimalen Dosierung – auch bei Organversagen oder Organersatzverfahren wie Dialyse – ist vielfach noch unklar.

Abstract

Background

The worldwide spread of multidrug-resistant Gram-negative bacteria (MDR-GN) continues. Treatment options for infections caused by MDR-GN remain scarce and only few new substances are currently in clinical phase II/III studies or have already been granted market approval.

Objectives

To provide an overview about current data on new β‑lactam antibiotics and β‑lactamase inhibitor combinations, respectively. New macrolides, ketolides and aminoglycosides are not addressed.

Materials and methods

Selective literature research regarding published data on ceftazidim/avibactam, ceftolozan/tazobactam, imipenem/cilastatin + relebactam, meropenem/vaborbactam, aztreonam/avibactam and cefiderocol, as well as registered trials.

Results

The development of new antimicrobials for the treatment of MDR-GN infections offers new options for attending physicians. β‑Lactamase producers are inhibited by these new substances, though with varying efficacy; however, there are still no adequate treatment options for metallo-β-lactamase (MBL) producers.

Conclusions

Clinical data are still indifferent and come from heterogeneous patient collectives. Direct comparisons with established treatment strategies, such as the “last-resort use” of polymyxins are hardly possible. Cases of early development of resistance have already been described. Finally, the importance of toxicity and optimal dosing—in organ failure or organ replacement procedures such as dialysis—remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bush K (2015) A resurgence of beta-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 46:483–493

    Article  CAS  Google Scholar 

  2. Bush K, Page MGP (2017) What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn 44:113–132

    Article  CAS  Google Scholar 

  3. Cabot G, Bruchmann S, Mulet X et al (2014) Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother 58:3091–3099

    Article  Google Scholar 

  4. Carmeli Y, Armstrong J, Laud PJ et al (2016) Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE). Lancet Infect Dis 16:661–673 (a randomised, pathogen-directed, phase 3 study)

    Article  CAS  Google Scholar 

  5. Chang HJ, Hsu PC, Yang CC et al (2011) Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: a matched case-control study. J Microbiol Immunol Infect 44:125–130

    Article  Google Scholar 

  6. Drawz SM, Papp-Wallace KM, Bonomo RA (2014) New beta-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 58:1835–1846

    Article  Google Scholar 

  7. Flamm RK, Sader HS, Farrell DJ, Jones RN (2014) Ceftazidime-avibactam and comparator agents tested against urinary tract isolates from a global surveillance program (2011). Diagn Microbiol Infect Dis 80:233–238

    Article  CAS  Google Scholar 

  8. Giddins MJ, Macesic N, Annavajhala MK et al (2018) Successive emergence of Ceftazidime-Avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02101-17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huntington JA, Sakoulas G, Umeh O et al (2016) Efficacy of ceftolozane/tazobactam versus levofloxacin in the treatment of complicated urinary tract infections (cUTIs) caused by levofloxacin-resistant pathogens: results from the ASPECT-cUTI trial. J Antimicrob Chemother 71:2014–2021

    Article  CAS  Google Scholar 

  10. Ito A, Kohira N, Bouchillon SK et al (2016) In vitro antimicrobial activity of S‑649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother 71:670–677

    Article  CAS  Google Scholar 

  11. Jacoby GA, Han P (1996) Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 34:908–911

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaye KS, Bhowmick T, Metallidis S et al (2018) Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA 319:788–799

    Article  CAS  Google Scholar 

  13. King M, Heil E, Kuriakose S et al (2017) Multicenter study of outcomes with Ceftazidime-Avibactam in patients with Carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00449-17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kohira N, West J, Ito A et al (2016) In vitro antimicrobial activity of a Siderophore Cephalosporin, S‑649266, against Enterobacteriaceae clinical isolates, including Carbapenem-resistant strains. Antimicrob Agents Chemother 60:729–734

    Article  CAS  Google Scholar 

  15. Lapuebla A, Abdallah M, Olafisoye O et al (2015) Activity of Imipenem with Relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother 59:5029–5031

    Article  CAS  Google Scholar 

  16. Lapuebla A, Abdallah M, Olafisoye O et al (2015) Activity of Meropenem combined with RPX7009, a novel beta-Lactamase inhibitor, against gram-negative clinical isolates in New York City. Antimicrob Agents Chemother 59:4856–4860

    Article  CAS  Google Scholar 

  17. Li H, Estabrook M, Jacoby GA, Nichols WW, Testa RT, Bush K (2015) In vitro susceptibility of characterized beta-lactamase-producing strains tested with avibactam combinations. Antimicrob Agents Chemother 59:1789–1793

    Article  CAS  Google Scholar 

  18. Lucasti C, Vasile L, Sandesc D et al (2016) Phase 2, dose-ranging study of Relebactam with Imipenem-Cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother 60:6234–6243

    Article  Google Scholar 

  19. Mazuski JE, Gasink LB, Armstrong J et al (2016) Efficacy and safety of Ceftazidime-Avibactam plus Metronidazole versus Meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis 62:1380–1389

    Article  CAS  Google Scholar 

  20. Mischnik A, Kaase M, Lubbert C, Seifert H, Kern WV (2015) Carbapenem-resistance in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. Dtsch Med Wochenschr 140:172–176

    Article  Google Scholar 

  21. Mollmann U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22:615–624

    Article  Google Scholar 

  22. Muller AE, Theuretzbacher U, Mouton JW (2015) Use of old antibiotics now and in the future from a pharmacokinetic/pharmacodynamic perspective. Clin Microbiol Infect 21:881–885

    Article  CAS  Google Scholar 

  23. Munita JM, Aitken SL, Miller WR et al (2017) Multicenter evaluation of Ceftolozane/Tazobactam for serious infections caused by Carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis 65:158–161

    Article  CAS  Google Scholar 

  24. Pfaller MA, Bassetti M, Duncan LR, Castanheira M (2017) Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in europe: report from an antimicrobial surveillance programme (2012–15). J Antimicrob Chemother 72:1386–1395

    Article  CAS  Google Scholar 

  25. Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166

    Article  CAS  Google Scholar 

  26. Portsmouth S, Vennhuyzen D, Echols R, Machida M, Ferrreira JCA et al (2017) Cefiderocol compared with imipenem/cilastatin in the treatment of adults with complicated urinary tract infections with or without pyelonephritis or acute uncomplicated pyelonephritis: results from a multicentre, doubleblind, randomized study. Presented at 27th European Congress of Clinical Microbiology and Infectious Diseases, April 2017 Vienna

  27. Sader HS, Farrell DJ, Castanheira M, Flamm RK, Jones RN (2014) Antimicrobial activity of ceftolozane/tazobactam tested against Pseudomonas aeruginosa and Enterobacteriaceae with various resistance patterns isolated in European hospitals (2011–12). J Antimicrob Chemother 69:2713–2722

    Article  CAS  Google Scholar 

  28. Shaw E, Rombauts A, Tubau F et al (2018) Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 73:1104–1106

    Article  Google Scholar 

  29. Shields RK, Clancy CJ, Hao B et al (2015) Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum beta-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae. Antimicrob Agents Chemother 59:5793–5797

    Article  CAS  Google Scholar 

  30. Shields RK, Potoski BA, Haidar G et al (2016) Clinical outcomes, drug toxicity, and emergence of Ceftazidime-Avibactam resistance among patients treated for Carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis 63:1615–1618

    Article  CAS  Google Scholar 

  31. Shields RK, Nguyen MH, Chen L et al (2017) Ceftazidime-Avibactam is superior to other treatment regimens against Carbapenem-resistant Klebsiella pneumoniae Bacteremia. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00883-17

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sims M, Mariyanovski V, McLeroth P et al (2017) Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother 72:2616–2626

    Article  CAS  Google Scholar 

  33. Solomkin J, Hershberger E, Miller B et al (2015) Ceftolozane/Tazobactam plus Metronidazole for complicated intra-abdominal infections in an era of Multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis 60:1462–1471

    Article  CAS  Google Scholar 

  34. Temkin E, Torre-Cisneros J, Beovic B et al (2017) Ceftazidime-Avibactam as salvage therapy for infections caused by Carbapenem-resistant organisms. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01964-16

    Article  PubMed  PubMed Central  Google Scholar 

  35. Torres A, Zhong N, Pachl J et al (2018) Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 18:285–295

    Article  CAS  Google Scholar 

  36. Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO (2015) Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 385:1949–1956

    Article  CAS  Google Scholar 

  37. Wagenlehner FM, Sobel JD, Newell P et al (2016) Ceftazidime-avibactam versus Doripenem for the treatment of complicated urinary tract infections, including acute Pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis 63:754–762

    Article  CAS  Google Scholar 

  38. Wright H, Bonomo RA, Paterson DL (2017) New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect 23:704–712

    Article  CAS  Google Scholar 

  39. Zhanel GG, Lawson CD, Adam H et al (2013) Ceftazidime-avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs 73:159–177

    Article  CAS  Google Scholar 

  40. Zhanel GG, Chung P, Adam H et al (2014) Ceftolozane/tazobactam: a novel cephalosporin/beta-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 74:31–51

    Article  CAS  Google Scholar 

  41. Zhanel GG, Lawrence CK, Adam H et al (2018) Imipenem-Relebactam and Meropenem-Vaborbactam: two novel Carbapenem-beta-Lactamase inhibitor combinations. Drugs 78:65–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mischnik.

Ethics declarations

Interessenkonflikt

A. Mischnik, C. Lübbert und N.T. Mutters geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Wehling, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mischnik, A., Lübbert, C. & Mutters, N.T. Neue β‑Laktam-Antibiotika und β‑Laktamase-Inhibitoren gegen multiresistente Gram-negative Erreger. Internist 59, 1335–1343 (2018). https://doi.org/10.1007/s00108-018-0508-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-018-0508-0

Schlüsselwörter

Keywords

Navigation