Skip to main content
Log in

Die dilatative Kardiomyopathie als genetische Erkrankung

Molekulare und klinische Aspekte

Dilated cardiomyopathy as a genetic disease: molecular and clinical aspects

  • Schwerpunkt: Entzündliche Herzerkrankungen
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die dilatative Kardiomyopathie (DCM) ist eine Erkrankung des Myokards heterogener Ätiologie. In bis zu 50% der Fälle wird eine familiäre Häufung beobachtet. In der letzten Dekade konnte eine Reihe von für die DCM ursächlichen Mutationen aufgeklärt werden. Hierbei handelt es sich um Mutationen in sarkomerischen Proteinen, aber auch in Proteinen der Zellmembran, des Zytoskeletts und des Zellkerns. Einer speziellen Komponente des Sarkomers, der Z-Scheibe, scheint dabei eine besondere Rolle in der Pathogenese zuzukommen. Zusätzlich zu den monogenetischen Ursachen einer DCM ist aber auch der „genetische Background“ von Bedeutung, da dieser über die endogenen Kompensationsmöglichkeiten den individuellen Krankheitsverlauf mitbestimmt. Bei genetisch bedingter Kardiomyopathie sollte immer auch eine Familienanamnese erhoben werden. Bei positiver Familienanamnese werden Angehörige 1. Grades zudem einem einfachen Screening mittels EKG und Echokardiographie unterzogen, um so ggf. weitere Betroffene zu identifizieren und frühzeitig behandeln zu können. Ferner sollte bei den genetischen Formen der Kardiomyopathie auch an extrakardiale Manifestationen, z. B. eine Beteiligung der Skelettmuskulatur gedacht werden. Die Aufklärung der verantwortlichen Krankheitsgene und molekularen Signalwege sollte es künftig ermöglichen, spezifische Therapiekonzepte zu entwickeln.

Abstract

Dilated cardiomyopathy is a disease of heterogenous etiology. In up to 50% of cases, familial aggregation is observed. During the past decade, several DCM-causing mutations could be identified, several of these in sarcomeric proteins. A specific component of the sarcomere, the z-disc, appears to be a “hot spot” in the molecular pathogenesis of DCM. Yet, mutations in proteins of the sarcolemma, the cytoskeleton, as well as the nuclear membrane can also lead to dilated cardiomyopathy. Morever, in addition to the monogenetic causes of cardiomyopathy, the genetic background of the individual patient may critically determine disease progression and the response to therapy. In the initial clinical evaluation of a patient newly diagnosed with DCM, it is important to obtain a careful family history in order to detect and treat additional family members which may be affected. Moreover, extracardiac manifestations of genetic DCM, such as skeletal muscle involvement, should be excluded. We anticipate that the elucidation of additional DCM disease genes as well as the underlying molecular pathways should lead to the development of novel specific therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6: 185–216

    Article  PubMed  CAS  Google Scholar 

  2. Ardehali H, Qasim A, Cappola T et al. (2004) Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J 147: 919–923

    Article  PubMed  Google Scholar 

  3. Assomull RG, Prasad SK, Lyne J et al. (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48: 1977–1985

    Article  PubMed  Google Scholar 

  4. Baig MK, Goldman JH, Caforio AL et al. (1998) Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 31: 195–201

    Article  PubMed  CAS  Google Scholar 

  5. Battersby EJ, Glenner GG (1961) Familial cardiomyopathy. Am J Med 30: 382–391

    Article  PubMed  CAS  Google Scholar 

  6. Bendig G, Grimmler M, Huttner IG et al. (2006) Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev 20: 2361–2372

    Article  PubMed  CAS  Google Scholar 

  7. Brancaccio M, Fratta L, Notte A et al. (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9: 68–75

    Article  PubMed  CAS  Google Scholar 

  8. Brancaccio M, Guazzone S, Menini N et al. (1999) Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. J Biol Chem 274: 29282–29288

    Article  PubMed  CAS  Google Scholar 

  9. Charron P, Komajda M (2002) Genes and their polymorphisms in mono- and multifactorial cardiomyopathies: towards pharmacogenomics in heart failure.Pharmacogenomics 3: 367–378

    Article  PubMed  CAS  Google Scholar 

  10. Crispell KA, Wray A, Ni H et al. (1999) Clinical profiles of four large pedigrees with familial dilated cardiomyopathy: preliminary recommendations for clinical practice. J Am Coll Cardiol 34: 837–847

    Article  PubMed  CAS  Google Scholar 

  11. Fananapazir L, Epstein ND (1994) Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation 89: 22–32

    PubMed  CAS  Google Scholar 

  12. Frey N, Barrientos T, Shelton JM et al. (2004) Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10: 1336–1343

    Article  PubMed  CAS  Google Scholar 

  13. Frey N, Olson EN (2002) Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem 277: 13998–14004

    Article  PubMed  CAS  Google Scholar 

  14. Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 97: 14632–14637

    Article  PubMed  CAS  Google Scholar 

  15. Geisterfer-Lowrance AA, Kass S, Tanigawa G et al. (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62: 999–1006

    Article  PubMed  CAS  Google Scholar 

  16. Grunig E, Benz A, Mereles D et al. (2003) Prognostic value of serial cardiac assessment and familial screening in patients with dilated cardiomyopathy. Eur J Heart Fail 5: 55–62

    Article  PubMed  Google Scholar 

  17. Grunig E, Tasman JA, Kucherer H et al. (1998) Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 31: 186–194

    Article  PubMed  CAS  Google Scholar 

  18. Itoh-Satoh M, Hayashi T, Nishi H et al. (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291: 385–393

    Article  PubMed  CAS  Google Scholar 

  19. Jackson E, Bellenger N, Seddon M et al. (2007) Ischaemic and non-ischaemic cardiomyopathies--cardiac MRI appearances with delayed enhancement.Clin Radiol 62: 395–403

    Article  PubMed  CAS  Google Scholar 

  20. Kamisago M, Sharma SD, DePalma SR et al. (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343: 1688–1696

    Article  PubMed  CAS  Google Scholar 

  21. Knoll R, Hoshijima M, Hoffman HM et al. (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111: 943–955

    Article  PubMed  CAS  Google Scholar 

  22. Knoll R, Postel R, Wang J et al. (2007) Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116: 515–525

    Article  PubMed  CAS  Google Scholar 

  23. Mahon NG, Murphy RT, MacRae CA et al. (2005) Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardiomyopathy reveals preclinical disease. Ann Intern Med 143: 108–115

    PubMed  Google Scholar 

  24. Marian AJ (2002) Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol 17: 242–252

    Article  PubMed  CAS  Google Scholar 

  25. Maron BJ, Towbin JA, Thiene G et al. (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113: 1807–1816

    Article  PubMed  Google Scholar 

  26. McNamara DM, Tam SW, Sabolinski ML et al. (2006) Aldosterone synthase promoter polymorphism predicts outcome in African Americans with heart failure: results from the A-HeFT Trial. J Am Coll Cardiol 48: 1277–1282

    Article  PubMed  CAS  Google Scholar 

  27. Mestroni L, Maisch B, McKenna WJ et al. (1999) Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J 20: 93–102

    Article  PubMed  CAS  Google Scholar 

  28. Mestroni L, Rocco C, Gregori D et al. (1999) Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol 34: 181–190

    Article  PubMed  CAS  Google Scholar 

  29. Michels VV, Moll PP, Miller FA et al. (1992) The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 326: 77–82

    Article  PubMed  CAS  Google Scholar 

  30. Olson TM, Michels VV, Thibodeau SN et al. (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280: 750–752

    Article  PubMed  CAS  Google Scholar 

  31. Osio A, Tan L, Chen SN et al. (2007) Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 100: 766–768

    Article  PubMed  CAS  Google Scholar 

  32. Richardson P, McKenna W, Bristow M et al. (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93: 841–842

    PubMed  CAS  Google Scholar 

  33. Spirito P, Maron BJ, Bonow RO et al. (1987) Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am J Cardiol 60: 123–129

    Article  PubMed  CAS  Google Scholar 

  34. Vang S, Corydon TJ, Borglum AD et al. (2005) Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J 272: 2037–2049

    Article  PubMed  CAS  Google Scholar 

  35. Vatta M, Mohapatra B, Jimenez S et al. (2003) Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 42: 2014–2027

    Article  PubMed  CAS  Google Scholar 

  36. Watkins H, Rosenzweig A, Hwang DS et al. (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 326: 1108–1114

    Article  PubMed  CAS  Google Scholar 

  37. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678

    Article  CAS  Google Scholar 

Download references

Danksagung

Wir danken Mark Lüdde, Christian Kuhn und Stefanie Lehrke für die Hilfe bei der Erstellung dieses Manuskripts.

Interessenkonflikt

Es besteht bei keinem der Autoren ein Interessenkonflikt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.A. Katus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, N., Katus, H. Die dilatative Kardiomyopathie als genetische Erkrankung. Internist 49, 43–50 (2008). https://doi.org/10.1007/s00108-007-1984-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-007-1984-9

Schlüsselwörter

Keywords

Navigation