Skip to main content
Log in

Strategien zur nichtinvasiven Diagnostik des Melanoms

Strategies for the noninvasive diagnosis of melanoma

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Bei fortgeschrittenen Melanomen gelingt eine Diagnosestellung meist durch eine Untersuchung mit dem bloßen Auge, gefolgt von einer chirurgischen Exzision und einer histopathologischen Befundung. Im Rahmen von Screeninguntersuchungen zwecks einer Melanomfrüherkennung, insbesondere bei Patienten mit sehr vielen Nävi, geht es jedoch um die Differenzierung atypischer, aber benigner Nävi von In-situ-Melanomen oder initial invasiven Melanomen. In dieser Situation besteht ein Bedarf an zusätzlichen, nichtinvasiven Untersuchungstechnologien, die den Dermatologen bei der Entscheidung für oder gegen eine Exzisionsbiopsie unterstützen. Die Dermatoskopie konnte ihren Zusatznutzen in Metaanalysen bestätigen und ist seit vielen Jahren ein fester Bestandteil in der dermatologischen Diagnostik. Ergänzend können dynamische Veränderungen oder eine Neuentstehung von Pigmentmalen mithilfe der sequenziellen digitalen Dermatoskopie oder der (automatisierten) Ganzkörperfotografie erfasst werden und so sinnvoll zur Melanomfrüherkennung beitragen. Neben diesen etablierten Untersuchungstechniken sind in den letzten Jahren zahlreiche Medizinprodukte durch die amerikanischen und europäischen Behörden für die nichtinvasive Diagnostik kutaner Neoplasien zugelassen worden. Diese Geräte basieren dabei auf physikalischen Verfahren wie der konfokalen Laserscanmikroskopie, der Multispektralanalyse, der elektrischen Impedanzspektroskopie oder der Raman-Spektroskopie. Weitere Technologien befinden sich noch auf dem Sprung von einer bisher mehr experimentellen hin zu einer klinischen Anwendung. Diese Arbeit gibt einen Überblick über die verschiedenen Technologien und beleuchtet deren Indikation und Zusatznutzen für den anwendenden Dermatologen.

Abstract

The diagnosis of advanced cutaneous melanoma may easily be made by the unaided eye, followed by excisional biopsy and histopathological examination. However, in the setting of melanoma screening examinations in high-risk patients with many nevi, dermatologists are challenged with the differentiation of atypical but benign nevi and early invasive or in situ melanomas. In this situation, there is a real need for additional, noninvasive examination techniques that may serve as an aide to decide for or against an excisional biopsy. Conventional dermoscopy is a well-established examination procedure and an increase in sensitivity was confirmed by two independent meta-analyses. Moreover, dynamic changes or newly developed pigmented lesions may be detected by sequential digital dermoscopy or (automated) total body photography, respectively. Over the past years, a number of medicinal products gained market access after licensing by American and European agencies for the noninvasive diagnosis of cutaneous neoplasms. These devices are based on technologies including in vivo reflectance confocal microscopy, multispectral analysis, electrical impedance spectroscopy, or Raman spectroscopy. Other technologies are still on the verge of becoming less experimental but more clinically applicable for diagnosing melanoma (in vivo multiphoton tomography, stepwise two-photon laser spectroscopy, infrared thermal image analysis, epidermal genetic information retrieval). This review provides a concise overview of general principles and sheds light on indication and added value for dermatologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Nikolaou V, Stratigos AJ (2014) Emerging trends in the epidemiology of melanoma. Br J Dermatol 170:11–19

    Article  CAS  PubMed  Google Scholar 

  2. Katalinic A, Waldmann A, Weinstock MA et al (2012) Does skin cancer screening save lives?: An observational study comparing trends in melanoma mortality in regions with and without screening. Cancer 118:5395–5402

    Article  PubMed  Google Scholar 

  3. Katalinic A, Eisemann N, Waldmann A (2015) Skin cancer screening in Germany. Documenting melanoma incidence and mortality from 2008 to 2013. Dtsch Arztebl Int 112:629–634

    PubMed  PubMed Central  Google Scholar 

  4. Stang A, Jockel KH (2016) Does skin cancer screening save lives? A detailed analysis of mortality time trends in Schleswig-Holstein and Germany. Cancer 122:432–437

    Article  PubMed  Google Scholar 

  5. Herman C (2012) Emerging technologies for the detection of melanoma: Achieving better outcomes. Clin Cosmet Investig Dermatol 5:195–212

    Article  PubMed  PubMed Central  Google Scholar 

  6. Argenziano G, Giacomel J, Zalaudek I et al (2013) A clinico-dermoscopic approach for skin cancer screening: Recommendations involving a survey of the International Dermoscopy Society. Dermatol Clin 31:525–534 (vii)

    Article  CAS  PubMed  Google Scholar 

  7. venuto-Andrade C, Dusza SW, Agero AL et al (2007) Differences between polarized light dermoscopy and immersion contact dermoscopy for the evaluation of skin lesions. Arch Dermatol 143:329–338

    Google Scholar 

  8. Bafounta ML, Beauchet A, Aegerter P et al (2001) Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol 137:1343–1350

    Article  CAS  PubMed  Google Scholar 

  9. Vestergaard ME, Macaskill P, Holt PE et al (2008) Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: A meta-analysis of studies performed in a clinical setting. Br J Dermatol 159:669–676

    CAS  PubMed  Google Scholar 

  10. Pehamberger H, Steiner A, Wolff K (1987) In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol 17:571–583

    Article  CAS  PubMed  Google Scholar 

  11. Nachbar F, Stolz W, Merkle T et al (1994) The ABCD rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30:551–559

    Article  CAS  PubMed  Google Scholar 

  12. Argenziano G, Fabbrocini G, Carli P et al (1998) Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7‑point checklist based on pattern analysis. Arch Dermatol 134:1563–1570

    Article  CAS  PubMed  Google Scholar 

  13. Menzies SW, Ingvar C, Crotty KA et al (1996) Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol 132:1178–1182

    Article  CAS  PubMed  Google Scholar 

  14. Carli P, Giorgi V De, Crocetti E et al (2004) Improvement of malignant/benign ratio in excised melanocytic lesions in the „dermoscopy era“: A retrospective study 1997–2001. Br J Dermatol 150:687–692

    Article  CAS  PubMed  Google Scholar 

  15. Carli P, Giorgie V De, Chiarugi A et al (2004) Addition of dermoscopy to conventional naked-eye examination in melanoma screening: A randomized study. J Am Acad Dermatol 50:683–689

    Article  PubMed  Google Scholar 

  16. Piccolo D, Ferrari A, Peris K et al (2002) Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: A comparative study. Br J Dermatol 147:481–486

    Article  CAS  PubMed  Google Scholar 

  17. Carli P, Massi D, Giorgie V De et al (2002) Clinically and dermoscopically featureless melanoma: When prevention fails. J Am Acad Dermatol 46:957–959

    Article  PubMed  Google Scholar 

  18. Haenssle HA, Vente C, Bertsch HP et al (2004) Results of a surveillance programme for patients at high risk of malignant melanoma using digital and conventional dermoscopy. Eur J Cancer Prev 13:133–138

    Article  CAS  PubMed  Google Scholar 

  19. Haenssle HA, Krueger U, Vente C et al (2006) Results from an observational trial: Digital epiluminescence microscopy follow-up of atypical nevi increases the sensitivity and the chance of success of conventional dermoscopy in detecting melanoma. J Invest Dermatol 126:980–985

    Article  CAS  PubMed  Google Scholar 

  20. Kittler H, Guitera P, Riedl E et al (2006) Identification of clinically featureless incipient melanoma using sequential dermoscopy imaging. Arch Dermatol 142:1113–1119

    Article  PubMed  Google Scholar 

  21. Menzies SW, Gutenev A, Avramidis M et al (2001) Short-term digital surface microscopic monitoring of atypical or changing melanocytic lesions. Arch Dermatol 137:1583–1589

    Article  CAS  PubMed  Google Scholar 

  22. Altamura D, Avramidis M, Menzies SW (2008) Assessment of the optimal interval for and sensitivity of short-term sequential digital dermoscopy monitoring for the diagnosis of melanoma. Arch Dermatol 144:502–506

    Article  PubMed  Google Scholar 

  23. Bauer J, Blum A, Strohhacker U et al (2005) Surveillance of patients at high risk for cutaneous malignant melanoma using digital dermoscopy. Br J Dermatol 152:87–92

    Article  CAS  PubMed  Google Scholar 

  24. Haenssle HA, Korpas B, Hansen-Hagge C et al (2010) Selection of patients for long-term surveillance with digital dermoscopy by assessment of melanoma risk factors. Arch Dermatol 146:257–264

    Article  PubMed  Google Scholar 

  25. Robinson JK, Nickoloff BJ (2004) Digital epiluminescence microscopy monitoring of high-risk patients. Arch Dermatol 140:49–56

    PubMed  Google Scholar 

  26. Haenssle HA, Mograby N, Ngassa A et al (2016) Association of patient risk factors and frequency of nevus-associated cutaneous melanomas. JAMA Dermatol 152:291–298

    Article  PubMed  Google Scholar 

  27. Braun RP, Lemonnier E, Guillod J et al (1998) Two types of pattern modification detected on the follow-up of benign melanocytic skin lesions by digitized epiluminescence microscopy. Melanoma Res 8:431–437

    Article  CAS  PubMed  Google Scholar 

  28. Schiffner R, Schiffner-Rohe J, Landthaler M et al (2003) Long-term dermoscopic follow-up of melanocytic naevi: Clinical outcome and patient compliance. Br J Dermatol 149:79–86

    Article  CAS  PubMed  Google Scholar 

  29. Salerni G, Teran T, Puig S et al (2013) Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: A study on behalf of the International Dermoscopy Society. J Eur Acad Dermatol Venereol 27:805–814

    Article  CAS  PubMed  Google Scholar 

  30. Feit NE, Dusza SW, Marghoob AA (2004) Melanomas detected with the aid of total cutaneous photography. Br J Dermatol 150:706–714

    Article  CAS  PubMed  Google Scholar 

  31. Salerni G, Carrera C, Lovatto L et al (2012) Benefits of total body photography and digital dermatoscopy („two-step method of digital follow-up“) in the early diagnosis of melanoma in patients at high risk for melanoma. J Am Acad Dermatol 67:e17–e27

    Article  PubMed  Google Scholar 

  32. Banky JP, Kelly JW, English DR et al (2005) Incidence of new and changed nevi and melanomas detected using baseline images and dermoscopy in patients at high risk for melanoma. Arch Dermatol 141:998–1006

    Article  PubMed  Google Scholar 

  33. Risser J, Pressley Z, Veledar E et al (2007) The impact of total body photography on biopsy rate in patients from a pigmented lesion clinic. J Am Acad Dermatol 57:428–434

    Article  PubMed  Google Scholar 

  34. Ulrich M, Lange-Asschenfeldt S, Gonzalez S (2012) Clinical applicability of in vivo reflectance confocal microscopy in dermatology. G Ital Dermatol Venereol 147:171–178

    CAS  PubMed  Google Scholar 

  35. Gerger A, Koller S, Kern T et al (2005) Diagnostic applicability of in vivo confocal laser scanning microscopy in melanocytic skin tumors. J Investig Dermatol 124:493–498

    Article  CAS  PubMed  Google Scholar 

  36. Gerger A, Hofmann-Wellenhof R, Langsenlehner U et al (2008) In vivo confocal laser scanning microscopy of melanocytic skin tumours: Diagnostic applicability using unselected tumour images. Br J Dermatol 158:329–333

    Article  CAS  PubMed  Google Scholar 

  37. Marghoob AA, Charles CA, Busam KJ et al (2005) In vivo confocal scanning laser microscopy of a series of congenital melanocytic nevi suggestive of having developed malignant melanoma. Arch Dermatol 141:1401–1412

    PubMed  Google Scholar 

  38. Scope A, venuto-Andrade C, Agero AL et al (2007) In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: Consensus terminology glossary and illustrative images. J Am Acad Dermatol 57:644–658

    Article  PubMed  Google Scholar 

  39. Guitera P, Menzies SW, Longo C et al (2012) In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: Analysis of 710 consecutive clinically equivocal cases. J Invest Dermatol 132:2386–2394

    Article  CAS  PubMed  Google Scholar 

  40. Pellacani G, Cesinaro AM, Seidenari S (2005) Reflectance-mode confocal microscopy of pigmented skin lesions – improvement in melanoma diagnostic specificity. J Am Acad Dermatol 53:979–985

    Article  PubMed  Google Scholar 

  41. Pellacani G, Pepe P, Casari A et al (2014) Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: A longitudinal prospective study. Br J Dermatol 171:1044–1051

    Article  CAS  PubMed  Google Scholar 

  42. Segura S, Puig S, Carrera C et al (2009) Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy. J Am Acad Dermatol 61:216–229

    Article  PubMed  Google Scholar 

  43. Elbaum M, Kopf AW, Rabinovitz HS et al (2001) Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: A feasibility study. J Am Acad Dermatol 44:207–218

    Article  CAS  PubMed  Google Scholar 

  44. Monheit G, Cognetta AB, Ferris L et al (2011) The performance of MelaFind: A prospective multicenter study. Arch Dermatol 147:188–194

    Article  PubMed  Google Scholar 

  45. Winkelmann RR, Nikolaidis G, Rigel DS et al (2015) Comparison of the distribution of morphological disorganization of pigmented lesions in a community-based practice versus a university-based clinical setting as measured by a multispectral digital skin lesion analysis device: Impact on diagnosis. J Clin Aesthet Dermatol 8:16–18

    PubMed  PubMed Central  Google Scholar 

  46. Birgersson U, Birgersson E, Aberg P et al (2011) Non-invasive bioimpedance of intact skin: Mathematical modeling and experiments. Physiol Meas 32:1–18

    Article  PubMed  Google Scholar 

  47. Lui H, Zhao J, McLean D et al (2012) Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res 72:2491–2500

    Article  CAS  PubMed  Google Scholar 

  48. Gerami P, Alsobrook JP, Palmer TJ et al (2014) Development of a novel noninvasive adhesive patch test for the evaluation of pigmented lesions of the skin. J Am Acad Dermatol 71:237–244

    Article  PubMed  Google Scholar 

  49. Wachsman W, Morhenn V, Palmer T et al (2011) Noninvasive genomic detection of melanoma. Br J Dermatol 164:797–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herman C, Cetingul MP (2011) Quantitative visualization and detection of skin cancer using dynamic thermal imaging. J Vis Exp 51:e2679, doi:10.3791/2679

    Google Scholar 

  51. Bonmarin M, Gal FA Le (2014) Lock-in thermal imaging for the early-stage detection of cutaneous melanoma: A feasibility study. Comput Biol Med 47:36–43

    Article  PubMed  Google Scholar 

  52. Eichhorn R, Wessler G, Scholz M et al (2009) Early diagnosis of melanotic melanoma based on laser-induced melanin fluorescence. J Biomed Opt 14:034033

    Article  PubMed  Google Scholar 

  53. Leupold D, Scholz M, Stankovic G et al (2011) The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes. Pigment Cell Melanoma Res 24:438–445

    Article  PubMed  Google Scholar 

  54. Scholz M, Stankovic G, Scholz C et al (2012) En route to a new in vivo diagnostic of malignant pigmented melanoma. Pigment Cell Melanoma Res 25:281–283

    Article  CAS  PubMed  Google Scholar 

  55. Dimitrow E, Ziemer M, Koehler MJ et al (2009) Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 129:1752–1758

    Article  CAS  PubMed  Google Scholar 

  56. Seidenari S, Arginelli F, Dunsby C et al (2013) Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: Morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS ONE 8:e70682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Haenssle.

Ethics declarations

Interessenkonflikt

H.A. Haenssle hat als Berater der Firma SciBase AB Honorare erhalten. H.A. Haenssle und C. Fink sind als Studienärzte an der Durchführung einer multizentrischen Studie zur klinischen Prüfung des Magnosco Dermatofluoroskops (Magnosco DFC 1) beteiligt.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, C., Haenssle, H.A. Strategien zur nichtinvasiven Diagnostik des Melanoms. Hautarzt 67, 519–528 (2016). https://doi.org/10.1007/s00105-016-3796-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-016-3796-0

Schlüsselwörter

Keywords

Navigation