Skip to main content
Log in

UV, sichtbares Licht, Infrarot

Welche Wellenlängen produzieren oxidativen Stress in menschlicher Haut?

UV, visible and infrared light

Which wavelengths produce oxidative stress in human skin?

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Es wird experimentell gezeigt, dass die Bildung von freien Radikalen – hauptsächlich reaktiven Sauerstoffspezies (ROS) – die allgemeine photobiologische Antwort für die Haut-Sonnenlicht-Wechselwirkung darstellt. Das freie Radikal-Aktionsspektrum (Wellenlängenabhängigkeit) für ultraviolettes und sichtbares Licht (280–700 nm) wird mittels quantitativer ESR bestimmt. Sichtbares Licht produziert etwa 50% des totalen oxidativen Stresses, generiert durch Sonnenlicht. Wie in den anderen Bereichen können hoch reaktive O- 2-, OH- und CHR-Radikale in dieser Region identifiziert werden. Die Menge der erzeugten Radikale korreliert mit der Beleuchtungsstärke (Lux), die auf der Haut erreicht wird. Die Erzeugung freier Radikale durch nahes Infrarot (NIR, 700–1600 nm) in menschlicher Haut wird gezeigt. Die Radikalgenerierung ist von der Bestrahlungsstärke und der durch das NIR in der Haut induzierten stationären Temperatur abhängig. Die Temperaturabhängigkeit der Radikalbildung folgt der physiologischen Fieberkurve des Menschen. Über das gesamte aktive Sonnenspektrum werden im menschlichen Hautgewebe freie Radikale des gleichen Typs erzeugt. Der Bereich der schädlichen oder nützlichen Wirkung von Sonnenlicht definierter Qualität könnte künftig durch die Einführung eines Schwellenwertes für freie Radikale in der menschlichen Haut charakterisiert werden.

Abstract

Experimental evidence suggests that the creation of free radicals – mainly reactive oxygen species (ROS) – is the common photobiological answer to the skin-sunlight interaction. The free radical action spectrum (wavelength dependency) for ultraviolet and visible light (280–700 nm) has been determined by quantitative ESR spectroscopy. Visible light produces around 50% of the total oxidative stress caused by sunlight. Reactive species like O- 2, OH and CHR are generated by visible light. The amount of ROS correlates with the visible light intensity (illuminance). We demonstrated the creation of excess free radicals by near-infrared light (NIR, 700–1600 nm). Free radical generation does not depend exclusively on the NIR irradiance, but also on the NIR initiated skin temperature increase. The temperature dependence follows the physiological fever curve. Our results indicate that the complex biological system skin creates the same type of free radicals over the entire active solar spectrum. This general response will make it possible to define the beneficial or deleterious action of sunlight on human skin by introduction of a free radical threshold value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Anderson RR, Parish JA (1981) The optics of human skin. J Invest Dermatol 77:13–19

    Article  PubMed  CAS  Google Scholar 

  2. Baier J, Maisch T, Maier M et al (2007) Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin. J Invest Dermatol 127:1498–1506

    Article  PubMed  CAS  Google Scholar 

  3. Besaratinia A, Bates SE, Synold TW, Pfeifer GP (2004) Similar mutagenicity of photoactivated porphyrins and ultraviolet A radiation in mouse embryonic fibroblast: involvement of oxidative DNA lesions in mutagenesis. Biochem 43(49):15557–15566

    Article  CAS  Google Scholar 

  4. Brandt M, Rohr M, Schrader A (2001) Influence of VIS/NIR radiation on the characteristics of sunscreens and human skin. IFSCC Magazine 4(1):15–19

    Google Scholar 

  5. Cavallari V, Cicciarello R, Torre V et al (2001) Chronic heat-induced skin lesions (erythema ab Igne). Ultrastructural studies. Ultrastruct Pathol 25(2):93–97

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs J, Herrling TH, Groth N (2001) Detection of free radicals in skin: a review of the literature and new developments. Oxidants and antioxidants in cutaneous biology. Curr Probl Dermatol 29:1–17

    Article  PubMed  CAS  Google Scholar 

  7. Girotti AW (1998) Lipid hydroperoxide generation, turnover and effector action in biological systems. J Lipid Res 39:1529–1542

    PubMed  CAS  Google Scholar 

  8. Hakozaki T, Date A, Yoshii T et al (2006) Real-time vizualization and quantification of UVB-induced reactive oxygen species in a human skin equivalent model. Proceeding of IFSCC Congress Osaka, pp 1–6

  9. Haywood R (2006) Relevance of sunscreen application method, visible light and sun light intensity to free-radical protection: a study of ex vivo human skin. Photochem Photobiol 82(4):1123–1131

    Article  PubMed  CAS  Google Scholar 

  10. Herrling TH, Groth N, Golz K, Zastrow L (2000) The role of aggressive OH free radicals in skin – their generation detection and prevention. SÖFW-Journal 126(9):20–27

    Google Scholar 

  11. Hong EJ, Santucci LA, Tran X, Silverman DJ (1998) Superoxide dismutase-dependent, catalase-sensitive peroxides in human endothelial cells infected by rickettsia rickettsii. Infect Immun 66(4):1293–1298

    PubMed  CAS  Google Scholar 

  12. International Sun Protection Factor (SPF) Test Method (2006) Colipa Guidelines, http://www.colipa.com

  13. Jurkiewicz-Lange BA, Buettner G (2001) Electron paramagnetic resonance detection of free radicals in UV-irradiated human and mouse skin. In Oxidants and Antioxidants in Cutaneous Biology. Curr Probl Dermatol. Karger (Basel) 29:18–25

  14. Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    Article  PubMed  CAS  Google Scholar 

  15. Lund L, Ley RD, Felton LA, Timmins GS (2007) Determination of wavelength-specific UV protection factors of sunscreens in intact skin by EPR measurement of UV-induced reactive melanin radical. Photochem Photobiol 83:952–957

    Article  PubMed  CAS  Google Scholar 

  16. Measurement standards for UVA protection efficacy (1996) Japan Cosmetic Industry Association. Tech Bull

  17. Nishimura H, Yasui H, Sakurai H (2006) Generation and distribution of reactive oxygen species in the skin of hairless mice under UVA: studies on in vivo chemiluminescent detection and tape stripping methods. Exp Dermatol 15:891–899

    Article  PubMed  CAS  Google Scholar 

  18. Pullmann H, Möres E, Reinbach S (1985) Effects of ultrared and UVA radiation on human skin and the therapeutic use in atopic dermatitis. Z Hautkr 60(1/2):171–177

    Google Scholar 

  19. Ravanat JL, Di Mascio P, Martinez GR et al (2000) Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 275(51):40601–40604

    Article  PubMed  CAS  Google Scholar 

  20. Rossi M, Marini D, Rizzi A (2004) Methods and application for photorealistic rendering and lighting of ancient buildings. J Cult Heri 5:291–300

    Article  Google Scholar 

  21. Schroeder P, Pohl C, Calles CH et al (2007) Cellular response to infrared radiation involves retrograde mitochondrial signaling. Free Radic Biol Med 43:128–135

    Article  PubMed  CAS  Google Scholar 

  22. Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90:6666–6670

    Article  PubMed  CAS  Google Scholar 

  23. Zastrow L, Ferrero L, Herrling T, Groth N (2004) Integrated sun protection factor: a new sun protection factor based on free radicals generated by UV radiation. Skin Pharmacol Physiol 17:219–231

    Article  PubMed  CAS  Google Scholar 

  24. Zastrow L, Groth N, Klein F et al (2008) Detection and identification of free radicals generated by UV and visible light in ex vivo human skin. IFSCC Magazine 11(3):207–215

    CAS  Google Scholar 

  25. Zastrow L, Herrling TH, Berliner LJ et al (2003) In vivo measurement of free radicals on human skin. IFSCC Magazine 6:295–300

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zastrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zastrow, L., Groth, N., Klein, F. et al. UV, sichtbares Licht, Infrarot. Hautarzt 60, 310–317 (2009). https://doi.org/10.1007/s00105-008-1628-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-008-1628-6

Schlüsselwörter

Keywords

Navigation