Skip to main content

Advertisement

Log in

Impfkomplikationen und der Umgang mit Verdachtsfällen

Postvaccinal complications and management of suspected cases

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

In allen entwickelten Ländern besteht heute die Möglichkeit, sich vor impfpräventablen Infektionskrankheiten zu schützen. Aber nicht alle Menschen nehmen diese Option in Anspruch. Gerade in hoch entwickelten Ländern macht sich ein Trend zur „vaccination hesitancy“ bemerkbar, d. h. zur Zögerlichkeit, sich selbst oder seine Kinder impfen zu lassen. Die Gründe dafür sind vielfältig; der wichtigste Grund aber ist die Furcht vor Impfkomplikationen, v. a. solchen mit bleibendem Schaden oder tödlichem Ausgang.

Während es wenige nachgewiesene Assoziationen zwischen Impfung und unerwünschter Arzneimittelwirkung (UAW) gibt, wie z. B. Fieberkrampf nach einer Impfung gegen Masern, Mumps und Röteln (MMR), konnten andere Hypothesen inzwischen widerlegt werden, wie z. B. Autismus nach MMR-Impfung. Der vorliegende Artikel möchte zum einen eine Übersicht über bekannte Impfkomplikationen mit Hinweis auf einen kausalen Zusammenhang zur Impfung geben und zum andern auf Hypothesen zu potenziellen UAW eingehen, die inzwischen mithilfe von pharmakoepidemiologischen Studien widerlegt wurden.

Nur die wissenschaftliche Auseinandersetzung mit den Hypothesen, die v. a. in den sozialen Medien immer wieder thematisiert werden, kann dazu beitragen, Hinweise auf einen kausalen Zusammenhang entweder zu erhärten oder zu entkräften. Verdichten sich die Hinweise auf einen kausalen Zusammenhang, wie z. B. bei Darminvagination, werden die zuständigen Behörden, das Paul-Ehrlich-Institut (PEI) und die Europäische Arzneimittelagentur (EMA), risikominimierende Maßnahmen ergreifen. Liefern mehrere Studien und Metaanalysen keine Hinweise auf einen kausalen Zusammenhang, ist eine gezielte Kommunikationsstrategie erforderlich, um zu verhindern, dass Mythen weiter kursieren, Impfraten einbrechen und es zu Ausbrüchen von Infektionskrankheiten kommt.

Abstract

In all developed countries there is the possibility to protect oneself from vaccine-preventable diseases. However, not all individuals make use of this option. It is precisely in highly developed countries where a trend to vaccination hesitancy is noticeable, i. e. reluctance to get oneself or one’s children vaccinated. The reasons why this is so are many, but the most important reason is the fear of postvaccinal complications, especially of those that imply sequelae or those with fatal outcomes.

Whereas there are some proven associations between vaccination and adverse drug reaction, for example febrile seizures after the measles-mumps-rubella (MMR) vaccination, other hypotheses can be refuted, for example autism after the MMR vaccination. On one hand, this article gives an overview of known postvaccinal complications with indication of a causal association with vaccination and on the other hand addresses hypotheses of potential adverse drug reactions that have been refuted by pharmacoepidemiological studies.

Only the scientific debate of these hypotheses, which are repeatedly discussed, especially on social media, can contribute to corroborating or refuting a potential causal association. If evidence for a causal association grows, e. g. intussusception, the relevant authorities (e.g. Paul Ehrlich Institute, European Medicines Agency) will take risk-minimizing measures. If studies and meta-analyses do not reveal any evidence of a causal association, a targeted information strategy will be required in order to prevent myths from circulating, vaccination coverages from declining, and infectious diseases from spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Boylston AW (2018) The myth of the milkmaid. N Engl J Med 378(5):414–415. https://doi.org/10.1056/NEJMp1715349

    Article  PubMed  Google Scholar 

  2. Jenner E (1798) An inquiry into the causes and effects of variolae vaccinae, a disease discovered in some western counties of England. Sampson Low, London

    Google Scholar 

  3. Smith KA (2011) Edward Jenner and the small pox vaccine. Front Immunol 2:21. https://doi.org/10.3389/fimmu.2011.00021

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mentzer D, Oberle D, Keller-Stanislawski B (2018) Daten zur Pharmakovigilanz von Impfstoffen aus dem Jahr 2016. Bull Arzneimittelsicherh 1:17–24

    Google Scholar 

  5. WHO (2013) Causality assessment of an adverse event following immunization (AEFI). User manual for the revised WHO classification. www.who.int/vaccine_safety/publications/aevi_manual.pdf; Zugegriffen: 26.02.2019

    Google Scholar 

  6. Braun MM, Terracciano G, Salive ME et al (1998) Report of a US public health service workshop on hypotonic-hyporesponsive episode (HHE) after pertussis immunization. Pediatr Electron Pages 102(5):E52

    CAS  Google Scholar 

  7. Vermeer-de Bondt PE, Dzaferagić A, David S, van der Maas NAT (2006) Performance of the Brighton collaboration case definition for hypotonic-hyporesponsive episode (HHE) on reported collapse reactions following infant vaccinations in the Netherlands. Vaccine 24(49–50):7066–7070. https://doi.org/10.1016/j.vaccine.2006.07.008

    Article  PubMed  Google Scholar 

  8. DuVernoy TS, Braun MM (2000) Hypotonic-hyporesponsive episodes reported to the Vaccine Adverse Event Reporting System (VAERS), 1996–1998. Pediatrics 106(4):E52

    Article  CAS  PubMed  Google Scholar 

  9. Vigo A, Costagliola G, Ferrero E, Noce S (2017) Hypotonic-hyporesponsive episodes after administration of hexavalent DTP-based combination vaccine. A description of 12 cases. Hum Vaccin Immunother 13(6):1–4. https://doi.org/10.1080/21645515.2017.1287642

    Article  PubMed  Google Scholar 

  10. Rosillon D, Buyse H, Friedland LR, Ng S‑P, Velázquez FR, Breuer T (2015) Risk of intussusception after rotavirus vaccination. Meta-analysis of postlicensure studies. Pediatr Infect Dis J 34(7):763–768. https://doi.org/10.1097/INF.0000000000000715

    Article  PubMed  Google Scholar 

  11. Jacobsen SJ, Ackerson BK, Sy LS et al (2009) Observational safety study of febrile convulsion following first dose MMRV vaccination in a managed care setting. Vaccine 27(34):4656–4661. https://doi.org/10.1016/j.vaccine.2009.05.056

    Article  PubMed  Google Scholar 

  12. Schink T, Holstiege J, Kowalzik F, Zepp F, Garbe E (2014) Risk of febrile convulsions after MMRV vaccination in comparison to MMR or MMR+V vaccination. Vaccine 32(6):645–650. https://doi.org/10.1016/j.vaccine.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  13. Atanasoff S, Ryan T, Lightfoot R, Johann-Liang R (2010) Shoulder injury related to vaccine administration (SIRVA). Vaccine 28(51):8049–8052. https://doi.org/10.1016/j.vaccine.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  14. Bodor M, Montalvo E (2007) Vaccination-related shoulder dysfunction. Vaccine 25(4):585–587. https://doi.org/10.1016/j.vaccine.2006.08.034

    Article  PubMed  Google Scholar 

  15. Cook IF (2014) Subdeltoid/subacromial bursitis associated with influenza vaccination. Hum Vaccin Immunother 10(3):605–606

    Article  PubMed  Google Scholar 

  16. Cross GB, Moghaddas J, Buttery J, Ayoub S, Korman TM (2016) Don’t aim too high. Avoiding shoulder injury related to vaccine administration. Aust Fam Physician 45(5):303–306

    PubMed  Google Scholar 

  17. Messerschmitt PJ, Abdul-Karim FW, Iannotti JP, Gobezie RG (2012) Progressive osteolysis and surface chondrolysis of the proximal humerus following influenza vaccination. Orthopedics 35(2):e283–e286. https://doi.org/10.3928/01477447-20120123-26

    Article  PubMed  Google Scholar 

  18. Halpin AL, Gu W, Wise ME, Sejvar JJ, Hoekstra RM, Mahon BE (2018) Post-Campylobacter Guillain Barré Syndrome in the USA. Secondary analysis of surveillance data collected during the 2009–2010 novel Influenza A (H1N1) vaccination campaign. Epidemiol Infect 146(13):1740–1745. https://doi.org/10.1017/S0950268818001802

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weißer K, Matheis W, Keller-Stanislawski B (2017) Entwicklung eines PBTK-Modells für die Risikobewertung der Aluminiumexposition aus Adjuvanzien. Bull Arzneimittelsicherh 3:26–29

    Google Scholar 

  20. Matsui M, Shimizu M, Ioi A et al (2016) Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis and Guillain-Barre syndrome in a 16-month-old child. Child Neurol Open. https://doi.org/10.1177/2329048X15620641

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spagnoli C, Iodice A, Salerno GG et al (2016) CMV-associated axonal sensory-motor Guillain-Barré syndrome in a child. Case report and review of the literature. Eur J Paediatr Neurol 20(1):168–175. https://doi.org/10.1016/j.ejpn.2015.11.004

    Article  PubMed  Google Scholar 

  22. Islam B, Islam Z, GeurtsvanKessel CH et al (2018) Guillain-Barré syndrome following varicella-zoster virus infection. Eur J Clin Microbiol Infect Dis 37(3):511–518. https://doi.org/10.1007/s10096-018-3199-5

    Article  PubMed  Google Scholar 

  23. Cao-Lormeau VM, Blake A, Mons S et al (2016) Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia. A case-control study. Lancet 387(10027):1531–1539. https://doi.org/10.1016/S0140-6736(16)00562-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ et al (1979) Guillain-Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am J Epidemiol 110(2):105–123

    Article  CAS  PubMed  Google Scholar 

  25. Vellozzi C, Iqbal S, Broder K (2014) Guillain-Barre syndrome, influenza, and influenza vaccination. The epidemiologic evidence. Clin Infect Dis 58(8):1149–1155. https://doi.org/10.1093/cid/ciu005

    Article  PubMed  Google Scholar 

  26. Bergfors E, Hermansson G, Nyström Kronander U, Falk L, Valter L, Trollfors B (2014) How common are long-lasting, intensely itching vaccination granulomas and contact allergy to aluminium induced by currently used pediatric vaccines? A prospective cohort study. Eur J Pediatr 173(10):1297–1307. https://doi.org/10.1007/s00431-014-2318-2

    Article  CAS  PubMed  Google Scholar 

  27. Gherardi RK, Chérin P (1998) La myofasciite à macrophages. Une nouvelle entité. Groupe d’études et recherche sur les maladies musculaires acquises et dysimmunitaires (GERMMAD) de l’association française contre les myopathies (AFM) (Macrophagic fasciitis: a new entity. Groupe d’études et recherche surles maladies musculaires acquises et disimmunitaires (GERMMAD) de l’association française contre les myopathies (AFM)). Rev Med Interne 19(9):617–618

    Article  CAS  PubMed  Google Scholar 

  28. Gherardi RK, Coquet M, Cherin P et al (2001) Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 124(Pt 9):1821–1831

    Article  CAS  PubMed  Google Scholar 

  29. Verdier F, Burnett R, Michelet-Habchi C, Moretto P, Fievet-Groyne F, Sauzeat E (2005) Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminium containing vaccines in the Cynomolgus monkey. Vaccine 23(11):1359–1367. https://doi.org/10.1016/j.vaccine.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  30. Müller-Nordhorn J, Hettler-Chen C‑M, Keil T, Muckelbauer R (2015) Association between sudden infant death syndrome and diphtheria-tetanus-pertussis immunisation. An ecological study. BMC Pediatr 15:1. https://doi.org/10.1186/s12887-015-0318-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robert Koch-Institut (2014) TOKEN-Studie über Todesfälle bei Kindern im 2. bis 24. Lebensmonat. https://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/Weitere_Studien/TOKEN_Studie/token_node.html; Zugegriffen: 26.02.2019

    Google Scholar 

  32. Vennemann MMT, Butterfass-Bahloul T, Jorch G et al (2007) Sudden infant death syndrome. No increased risk after immunisation. Vaccine 25(2):336–340. https://doi.org/10.1016/j.vaccine.2006.07.027

    Article  CAS  PubMed  Google Scholar 

  33. Statistisches Bundesamt (2014) Todesursachenstatistik ab 1998. Sterbefälle, Sterbeziffern (je 100.000 Einwohner, altersstandardisiert) (www.gbe-bund.de)

    Google Scholar 

  34. Glanz JM, Newcomer SR, Daley MF et al (2018) Association between estimated cumulative vaccine antigen exposure through the first 23 months of life and non-vaccine-targeted infections from 24 through 47 months of age. JAMA 319(9):906–913. https://doi.org/10.1001/jama.2018.0708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mina MJ, Metcalf CJE, de Swart RL, Osterhaus ADME, Grenfell BT (2015) Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 348(6235):694–699. https://doi.org/10.1126/science.aaa3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ludlow M, McQuaid S, Milner D, de Swart RL, Duprex WP (2015) Pathological consequences of systemic measles virus infection. J Pathol 235(2):253–265. https://doi.org/10.1002/path.4457

    Article  CAS  PubMed  Google Scholar 

  37. Iqbal S, Barile JP, Thompson WW, DeStefano F (2013) Number of antigens in early childhood vaccines and neuropsychological outcomes at age 7–10 years. Pharmacoepidemiol Drug Saf 22(12):1263–1270. https://doi.org/10.1002/pds.3482

    Article  PubMed  Google Scholar 

  38. Wakefield AJ, Murch SH, Anthony A et al (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351(9103):637–641

    Article  CAS  PubMed  Google Scholar 

  39. Dyer C (2010) Lancet retracts Wakefield’s MMR paper. BMJ 340:c696. https://doi.org/10.1136/bmj.c696

    Article  PubMed  Google Scholar 

  40. Freitag C (2014) Autismus-Spektrum Störung nach DSM-5. Z Kinder Jugendpsychiatr Psychother 42:185–192. https://doi.org/10.1024/1422-4917/a000288

    Article  PubMed  Google Scholar 

  41. DeStefano F, Bhasin TK, Thompson WW, Yeargin-Allsopp M, Boyle C (2004) Age at first measles-mumps-rubella vaccination in children with autism and school-matched control subjects: a population-based study in metropolitan atlanta. Pediatrics 113(2):259–266

    Article  PubMed  Google Scholar 

  42. Mrozek-Budzyn D, Kieltyka A, Majewska R (2010) Lack of association between measles-mumps-rubella vaccination and autism in children: a case-control study. Pediatr Infect Dis J 29(5):397–400. https://doi.org/10.1097/INF.0b013e3181c40a8a

    Article  PubMed  Google Scholar 

  43. Price CS, Thompson WW, Goodson B et al (2010) Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism. Pediatrics 126(4):656–664. https://doi.org/10.1542/peds.2010-0309

    Article  PubMed  Google Scholar 

  44. Smeeth L, Cook C, Fombonne E et al (2004) MMR vaccination and pervasive developmental disorders: a case-control study. Lancet 364(9438):963–969. https://doi.org/10.1016/S0140-6736(04)17020-7

    Article  PubMed  Google Scholar 

  45. Uno Y, Uchiyama T, Kurosawa M, Aleksic B, Ozaki N (2012) The combined measles, mumps, and rubella vaccines and the total number of vaccines are not associated with development of autism spectrum disorder: the first case-control study in Asia. Vaccine 30(28):4292–4298. https://doi.org/10.1016/j.vaccine.2012.01.093

    Article  PubMed  Google Scholar 

  46. Uno Y, Uchiyama T, Kurosawa M, Aleksic B, Ozaki N (2015) Early exposure to the combined measles-mumps-rubella vaccine and thimerosal-containing vaccines and risk of autism spectrum disorder. Vaccine 33(21):2511–2516. https://doi.org/10.1016/j.vaccine.2014.12.036

    Article  CAS  PubMed  Google Scholar 

  47. Demicheli V, Rivetti A, Debalini MG, Di Pietrantonj C (2012) Vaccines for measles, mumps and rubella in children. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004407.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Taylor LE, Swerdfeger AL, Eslick GD (2014) Vaccines are not associated with autism: an evidence-based meta-analysis of case-control and cohort studies. Vaccine 32(29):3623–3629. https://doi.org/10.1016/j.vaccine.2014.04.085

    Article  CAS  PubMed  Google Scholar 

  49. Descamps D, Hardt K, Spiessens B et al (2009) Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention. A pooled analysis of 11 clinical trials. Hum Vaccin 5(5):332–340

    Article  PubMed  Google Scholar 

  50. Arnheim-Dahlström L, Pasternak B, Svanström H, Sparén P, Hviid A (2013) Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden. Cohort study. BMJ 347:f5906

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grimaldi-Bensouda L, Guillemot D, Godeau B et al (2014) Autoimmune disorders and quadrivalent human papillomavirus vaccination of young female subjects. J Intern Med 275(4):398–408. https://doi.org/10.1111/joim.12155

    Article  CAS  PubMed  Google Scholar 

  52. Hviid A, Svanström H, Scheller NM, Grönlund O, Pasternak B, Arnheim-Dahlström L (2018) Human papillomavirus vaccination of adult women and risk of autoimmune and neurological diseases. J Intern Med 283(2):154–165. https://doi.org/10.1111/joim.12694

    Article  CAS  PubMed  Google Scholar 

  53. Krewski D, Yokel RA, Nieboer E et al (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10(Suppl 1):1–269. https://doi.org/10.1080/10937400701597766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Priest ND (2004) The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer. Review and study update. J Environ Monit 6(5):375–403. https://doi.org/10.1039/b314329p

    Article  CAS  PubMed  Google Scholar 

  55. Bougle D, Bureau F, Voirin J, Neuville D, Duhamel JF (1992) A cross-sectional study of plasma and urinary aluminum levels in term and preterm infants. JPEN J Parenter Enteral Nutr 16(2):157–159. https://doi.org/10.1177/0148607192016002157

    Article  CAS  PubMed  Google Scholar 

  56. Hawkins NM, Coffey S, Lawson MS, Delves HT (1994) Potential aluminium toxicity in infants fed special infant formula. J Pediatr Gastroenterol Nutr 19(4):377–381

    Article  CAS  PubMed  Google Scholar 

  57. STIKO (2018) Impfkalender. https://www.rki.de/DE/Content/Kommissionen/STIKO/Empfehlungen/Aktuelles/Impfkalender.html Zugegriffen: 26.02.2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Oberle MSc..

Ethics declarations

Interessenkonflikt

D. Oberle, D. Mentzer, F. Rocha, R. Streit, K. Weißer und B. Keller-Stanislawski geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberle, D., Mentzer, D., Rocha, F. et al. Impfkomplikationen und der Umgang mit Verdachtsfällen. Bundesgesundheitsbl 62, 450–461 (2019). https://doi.org/10.1007/s00103-019-02913-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-019-02913-1

Schlüsselwörter

Keywords

Navigation