Skip to main content
Log in

Zielorientierte Volumen- und Kreislauftherapie

Konzepte, Indikationen und Risiken

Goal-directed hemodynamic therapy

Concepts, indications and risks

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Zielorientierte Volumen- und Kreislauftherapie sowie damit verbundene Therapiealgorithmen geraten zunehmend in den Interessenfokus des Anästhesiologen und des Intensivmediziners. Metaanalysen von Studien, die solche algorithmusgestützten, perioperativen, hämodynamischen Therapiestrategien mit der bisherigen klinischen Praxis verglichen, haben eine Reduktion der postoperativen Morbidität gezeigt. In diesem Übersichtsbeitrag werden grundsätzliche Konzepte der zielorientierten Volumen- und Kreislauftherapie sowie das Prinzip der bisher angewendeten Therapiealgorithmen vorgestellt und diskutiert. Ferner wird die Frage beleuchtet, wie diese Behandlungsstrategien konkret in die klinische Praxis übertragen werden können, und ob eine solche Implementierung ggf. auch Risiken bergen kann.

Abstract

Goal-directed hemodynamic therapy is becoming increasingly more interesting for anesthesiologists and intensive care physicians. Meta-analyses of studies evaluating perioperative therapy algorithms demonstrated a reduction of postoperative morbidity compared to the previous clinical practices. In this review article the basic concepts of goal-directed hemodynamic therapy and the principles of previously employed therapy algorithms are described and discussed. Furthermore, the questions of how these therapy strategies can be transferred into daily clinical practice and whether these therapeutic approaches might even bear risks for patients are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Abbas SM, Hill AG (2008) Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia 63:44–51

    Article  CAS  PubMed  Google Scholar 

  2. Ameloot K, Van De Vijver K, Van Regenmortel N et al (2014) Validation study of Nexfin(R) continuous non-invasive blood pressure monitoring in critically ill adult patients. Minerva Anestesiol 80:1294–1301

    CAS  PubMed  Google Scholar 

  3. Asfar P, Meziani F, Hamel JF et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593

    Article  CAS  PubMed  Google Scholar 

  4. Aya HD, Cecconi M, Hamilton M et al (2013) Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth 110:510–517

    Article  CAS  PubMed  Google Scholar 

  5. Bangash MN, Patel NS, Benetti E et al (2013) Dopexamine can attenuate the inflammatory response and protect against organ injury in the absence of significant effects on hemodynamics or regional microvascular flow. Crit Care 17:R57

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bender JS, Smith-Meek MA, Jones CE (1997) Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Ann Surg 226:229–236. (discussion 236–227)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Berg RM, Plovsing RR, Moller K (2014) High versus low blood-pressure target in septic shock. N Engl J Med 371:282

    Article  CAS  PubMed  Google Scholar 

  8. Berlauk JF, Abrams JH, Gilmour IJ et al (1991) Preoperative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. A prospective, randomized clinical trial. Ann Surg 214:289–297. (discussion 298–289)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bisgaard J, Gilsaa T, Ronholm E et al (2013) Haemodynamic optimisation in lower limb arterial surgery: room for improvement? Acta Anaesthesiol Scand 57:189–198

    Article  CAS  PubMed  Google Scholar 

  10. Bisgaard J, Gilsaa T, Ronholm E et al (2013) Optimising stroke volume and oxygen delivery in abdominal aortic surgery: a randomised controlled trial. Acta Anaesthesiol Scand 57:178–188

    Article  CAS  PubMed  Google Scholar 

  11. Bishop MH, Shoemaker WC, Appel PL et al (1995) Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma. J Trauma 38:780–787

    Article  CAS  PubMed  Google Scholar 

  12. Bonazzi M, Gentile F, Biasi GM et al (2002) Impact of perioperative haemodynamic monitoring on cardiac morbidity after major vascular surgery in low risk patients. A randomised pilot trial. Eur J Vasc Endovasc Surg 23:445–451

    Article  CAS  PubMed  Google Scholar 

  13. Brandstrup B, Svendsen PE, Rasmussen M et al (2012) Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth 109:191–199

    Article  CAS  PubMed  Google Scholar 

  14. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  CAS  PubMed  Google Scholar 

  15. Budohoski KP, Zweifel C, Kasprowicz M et al (2012) What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br J Anaesth 108:89–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Carson JL, Terrin ML, Noveck H et al (2011) Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med 365:2453–2462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cecconi M, Corredor C, Arulkumaran N et al (2013) Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care 17:209

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cecconi M, Fasano N, Langiano N et al (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15:R132

    Article  PubMed Central  PubMed  Google Scholar 

  19. Challand C, Struthers R, Sneyd JR et al (2012) Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 108:53–62

    Article  CAS  PubMed  Google Scholar 

  20. Conway DH, Mayall R, Abdul-Latif MS et al (2002) Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia 57:845–849

    Article  CAS  PubMed  Google Scholar 

  21. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  22. Donati A, Loggi S, Preiser JC et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132:1817–1824

    Article  PubMed  Google Scholar 

  23. Ebm C, Cecconi M, Sutton L et al (2014) A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med 42:1194–1203

    Article  PubMed  Google Scholar 

  24. Gan TJ, Soppitt A, Maroof M et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  25. Ghaferi AA, Birkmeyer JD, Dimick JB (2009) Variation in hospital mortality associated with inpatient surgery. N Engl J Med 361:1368–1375

    Article  CAS  PubMed  Google Scholar 

  26. Giglio M, Dalfino L, Puntillo F et al (2012) Haemodynamic goal-directed therapy in cardiac and vascular surgery. A systematic review and meta-analysis. Interact Cardiovasc Thorac Surg 15:878–887

    Article  PubMed Central  PubMed  Google Scholar 

  27. Goepfert MS, Richter HP, Zu Eulenburg C et al (2013) Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology 119:824–836

    Article  CAS  PubMed  Google Scholar 

  28. Grocott MP, Dushianthan A, Hamilton MA et al (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth 111:535–548

    Article  CAS  PubMed  Google Scholar 

  29. Gurgel ST, Do Nascimento P Jr (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391

    Article  PubMed  Google Scholar 

  30. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analgesia 112:1392–1402

    Article  Google Scholar 

  31. Hebert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340:409–417

    Article  CAS  PubMed  Google Scholar 

  32. Heckel K, Winkelmann B, Strunden MS et al (2012) Tetrastarch sustains pulmonary microvascular perfusion and gas exchange during systemic inflammation. Crit Care Med 40:518–531

    Article  CAS  PubMed  Google Scholar 

  33. Higham H, Sear JW, Sear YM et al (2004) Peri-operative troponin I concentration as a marker of long-term postoperative adverse cardiac outcomes–a study in high-risk surgical patients. Anaesthesia 59:318–323

    Article  CAS  PubMed  Google Scholar 

  34. Ilies C, Grudev G, Hedderich J et al (2014) Comparison of a continuous noninvasive arterial pressure device with invasive measurements in cardiovascular postsurgical intensive care patients: a prospective observational study. Eur J Anaesthesiol 32:20–28

    Article  Google Scholar 

  35. Investigators A, Group ACT, Peake SL et al (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–1506

    Article  CAS  PubMed  Google Scholar 

  36. Jhanji S, Thomas B, Ely A et al (2008) Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia 63:695–700

    Article  CAS  PubMed  Google Scholar 

  37. Jhanji S, Vivian-Smith A, Lucena-Amaro S et al (2010) Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care 14:R151

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kampf S, Schramm P, Klein KU (2013) Transcranial doppler and near infrared spectroscopy in the perioperative period. Curr Opin Anaesthesiol

  39. Kirkpatrick AW, Roberts DJ, De Waele J (2014) High versus low blood-pressure target in septic shock. N Engl J Med 371:282–283

    Article  CAS  PubMed  Google Scholar 

  40. Kober D, Trepte C, Petzoldt M et al (2013) Cardiac index assessment using bioreactance in patients undergoing cytoreductive surgery in ovarian carcinoma. J Clin Monit Comput 27:621–627

    Article  PubMed  Google Scholar 

  41. Larsson A, Uusijarvi J, Eksborg S et al (2010) Tissue oxygenation measured with near-infrared spectroscopy during normobaric and hyperbaric oxygen breathing in healthy subjects. Eur J Appl Physiol 109:757–761

    Article  CAS  PubMed  Google Scholar 

  42. Levy M, Heels-Ansdell D, Hiralal R et al (2011) Prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurement after noncardiac surgery: a systematic review and meta-analysis. Anesthesiology 114:796–806

    Article  CAS  PubMed  Google Scholar 

  43. Levy MM, Rhodes A, Phillips GS et al (2014) Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Intensive Care Med 40:1623–1633

    Article  PubMed  Google Scholar 

  44. Licker M, De Perrot M, Spiliopoulos A et al (2003) Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg 97:1558–1565

    Article  PubMed  Google Scholar 

  45. Lieberman L, Petraszko T, Yi QL et al (2014) Transfusion-related lung injury in children: a case series and review of the literature. Transfusion 54:57–64

    Article  PubMed  Google Scholar 

  46. Lobo SM, Rezende E, Knibel MF et al (2011) Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients. Anesth Analg 112:877–883

    Article  PubMed  Google Scholar 

  47. Lobo SM, Salgado PF, Castillo VG et al (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 28:3396–3404

    Article  CAS  PubMed  Google Scholar 

  48. Manecke GR, Asemota A, Michard F (2014) Tackling the economic burden of postsurgical complications: would perioperative goal-directed fluid therapy help? Crit Care 18:566

    Article  PubMed Central  PubMed  Google Scholar 

  49. Marik PE, Corwin HL (2008) Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med 36:2667–2674

    Article  PubMed  Google Scholar 

  50. Marik PE, Desai H (2012) Goal directed fluid therapy. Curr Pharm Des 18:6215–6224

    Article  CAS  PubMed  Google Scholar 

  51. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  52. Mayer J, Boldt J, Mengistu AM et al (2010) Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care 14:R18

    Article  PubMed Central  PubMed  Google Scholar 

  53. Mckendry M, Mcgloin H, Saberi D et al (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    Article  CAS  PubMed  Google Scholar 

  55. Neill F, Sear JW, French G et al (2000) Increases in serum concentrations of cardiac proteins and the prediction of early postoperative cardiovascular complications in noncardiac surgery patients. Anaesthesia 55:641–647

    Article  CAS  PubMed  Google Scholar 

  56. Noblett SE, Snowden CP, Shenton BK et al (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93:1069–1076

    Article  CAS  PubMed  Google Scholar 

  57. Nohe B, Ploppa A, Schmidt V et al (2011) [Volume replacement in intensive care medicine]. Anaesthesist 60:457–464, 466–473

    Article  CAS  PubMed  Google Scholar 

  58. Osman D, Ridel C, Ray P et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  59. Patel A, Waheed U, Brett SJ (2013) Randomised trials of 6 % tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: systematic review and meta-analysis. Intensive Care Med 39:811–822

    Article  CAS  PubMed  Google Scholar 

  60. Pearse R, Dawson D, Fawcett J et al (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–693

    Article  PubMed Central  PubMed  Google Scholar 

  61. Pearse RM, Harrison DA, James P et al (2006) Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care 10:R81

    Article  PubMed Central  PubMed  Google Scholar 

  62. Pearse RM, Harrison DA, Macdonald N et al (2014) Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 311:2181–2190

    Article  CAS  PubMed  Google Scholar 

  63. Pearse RM, Moreno RP, Bauer P et al (2012) Mortality after surgery in Europe: a 7 day cohort study. Lancet 380:1059–1065

    Article  PubMed Central  PubMed  Google Scholar 

  64. Perel A, Habicher M, Sander M (2013) Bench-to-bedside review: functional hemodynamics during surgery – should it be used for all high-risk cases? Critical care 17:203

    Article  PubMed Central  PubMed  Google Scholar 

  65. Perner A, Haase N, Guttormsen AB et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134

    Article  CAS  PubMed  Google Scholar 

  66. Pinsky MR (2012) Heart lung interactions during mechanical ventilation. Curr Opin Crit Care 18:256–260

    Article  PubMed  Google Scholar 

  67. Pro CI, Yealy DM, Kellum JA et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693

    Article  Google Scholar 

  68. Reinhart K, Perner A, Sprung CL et al (2012) Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med 38:368–383

    Article  CAS  PubMed  Google Scholar 

  69. Renton MC, Snowden CP (2005) Dopexamine and its role in the protection of hepatosplanchnic and renal perfusion in high-risk surgical and critically ill patients. Br J Anaesth 94:459–467

    Article  CAS  PubMed  Google Scholar 

  70. Reuter DA, Goetz AE, Peter K (2003) [Assessment of volume responsiveness in mechanically ventilated patients]. Anaesthesist 52:1005–1007, 1010–1003

    Article  CAS  PubMed  Google Scholar 

  71. Reuter DA, Huang C, Edrich T et al (2010) Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg 110:799–811

    Article  PubMed  Google Scholar 

  72. Rhodes A, Cecconi M, Hamilton M et al (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36:1327–1332

    Article  PubMed  Google Scholar 

  73. Richter HP, Petersen C, Goetz AE et al (2011) Detection of right ventricular insufficiency and guidance of volume therapy are facilitated by simultaneous monitoring of static and functional preload parameters. J Cardiothorac Vasc Anesth 25:1051–1055

    Article  PubMed  Google Scholar 

  74. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  75. Sakka SG, Ruhl CC, Pfeiffer UJ et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  CAS  PubMed  Google Scholar 

  76. Salzwedel C, Puig J, Carstens A et al (2013) Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care 17:R191

    Article  PubMed Central  PubMed  Google Scholar 

  77. Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  78. Saugel B, Reuter DA (2015) Goal-directed resuscitation in septic shock. N Engl J Med 372:190

    PubMed  Google Scholar 

  79. Saugel B, Reuter DA (2014) III. Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth 113:340–343

    Article  CAS  PubMed  Google Scholar 

  80. Saugel B, Reuter DA (2014) Use of hemodynamic algorithm after gastrointestinal surgery. JAMA 312:1469–1470

    Article  PubMed  Google Scholar 

  81. Saugel B, Meidert AS, Hapfelmeier A et al (2013) Non-invasive continuous arterial pressure measurement based on radial artery tonometry in the intensive care unit: a method comparison study using the T-Line TL-200pro device. Br J Anaesth 111:185–190

    Article  CAS  PubMed  Google Scholar 

  82. Saugel B, Meidert AS, Langwieser N et al (2014) An autocalibrating algorithm for non-invasive cardiac output determination based on the analysis of an arterial pressure waveform recorded with radial artery applanation tonometry: a proof of concept pilot analysis. J Clin Monit Comput 28:357–362

    Article  PubMed  Google Scholar 

  83. Saugel B, Trepte CJ, Heckel K et al (2015) Hemodynamic Management of Septic Shock: is it Time for ‚Individual Goal-Directed Hemodynamic Therapy‘ and for Specifically Targeting the Microcirculation? Shock 43(6):522–529

  84. Schummer W (2009) [Central venous pressure. Validity, informative value and correct measurement]. Anaesthesist 58:499–505

    Article  CAS  PubMed  Google Scholar 

  85. Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  CAS  PubMed  Google Scholar 

  86. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315:909–912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Smetkin AA, Kirov MY, Kuzkov VV et al (2009) Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand 53:505–514

    Article  CAS  PubMed  Google Scholar 

  88. Soni N (2009) British Consensus Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients (GIFTASUP): Cassandra’s view. Anaesthesia 64:235–238

    Article  CAS  PubMed  Google Scholar 

  89. Trinooson CD, Gold ME (2013) Impact of goal-directed perioperative fluid management in high-risk surgical procedures: a literature review. AANA J 81:357–368

    PubMed  Google Scholar 

  90. Ueno S, Tanabe G, Yamada H et al (1998) Response of patients with cirrhosis who have undergone partial hepatectomy to treatment aimed at achieving supranormal oxygen delivery and consumption. Surgery 123:278–286

    Article  CAS  PubMed  Google Scholar 

  91. Valentine RJ, Duke ML, Inman MH et al (1998) Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. J Vasc Surg 27:203–211. (discussion 211–202)

    Article  CAS  PubMed  Google Scholar 

  92. Venn R, Steele A, Richardson P et al (2002) Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth 88:65–71

    Article  CAS  PubMed  Google Scholar 

  93. Wakeling HG, Mcfall MR, Jenkins CS et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95:634–642

    Article  CAS  PubMed  Google Scholar 

  94. Walsh SR, Tang T, Bass S et al (2008) Doppler-guided intra-operative fluid management during major abdominal surgery: systematic review and meta-analysis. Int J Clin Pract 62:466–470

    Article  CAS  PubMed  Google Scholar 

  95. Weiser TG, Regenbogen SE, Thompson KD et al (2008) An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372:139–144

    Article  PubMed  Google Scholar 

  96. Wilson J, Woods I, Fawcett J et al (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318:1099–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Wodack KH, Poppe AM, Lena T et al (2014) Individualized early goal-directed therapy in systemic inflammation: is full utilization of preload reserve the optimal strategy? Crit Care Med 42:e741–751

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.A. Haas EDIC.

Ethics declarations

Interessenkonflikt

D. Reuter und B. Saugel sind Mitglieder des Medical Advisory Board der Firma Pulsion.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, S., Saugel, B., Trepte, C. et al. Zielorientierte Volumen- und Kreislauftherapie. Anaesthesist 64, 494–505 (2015). https://doi.org/10.1007/s00101-015-0035-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-015-0035-5

Schlüsselwörter

Keywords

Navigation