Skip to main content
Log in

Delir auf der Intensivstation

Delirium in the intensive care unit

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Das Intensivdelir bzw. das Delir des Intensivpatienten erfährt in den letzten Jahren international ein zunehmendes Interesse der Intensivmediziner. Auf deutschen Intensivstationen hingegen scheint dieses hoch komplexe Krankheitsbild weiterhin eine lästige Begleiterscheinung darzustellen, dessen Bedeutung verkannt wird. Das ist insofern erstaunlich, als dass dank der Entwicklung hoch differenzierter Beatmungsgeräte für die meisten Intensivpatienten eine tiefe Analgosedierung heute oftmals obsolet ist und leicht zu handhabende Bedside-Tests erarbeitet wurden, die ein neurologisches und kognitives „scoring“ des beatmeten Intensivpatienten ermöglichen. Die Inzidenz des Intensivdelirs erweist sich dabei als überraschend hoch. In seiner Bedeutung ist das Intensivdelir als ein Organversagen zu verstehen und gilt als unabhängiger prognostischer Faktor für die Letalität und die Krankenhausverweildauer. Sowohl die Pathophysiologie als auch die Risikofaktoren sind bisher noch unzureichend verstanden. Als gesichert gilt, dass bestimmte alterassoziierte Vorerkrankungen, allen voran die Demenz, die aktuelle Diagnose bzw. der erfolgte chirurgische Eingriff und viele „Standardmedikamente“ der anästhesiologischen Prämedikation sowie der Intensivtherapie ein deutlich höheres Risiko für die Entwicklung eines Intensivdelirs nach sich ziehen. Bezüglich der Pathophysiologie des Delirs wird eine Imbalance von Neurotransmittern, insbesondere zwischen Acetylcholin (ACh) und Dopamin/Serotonin vermutet. Die therapeutischen Möglichkeiten beschränken sich bislang auf die Anwendung von reorientierenden Begleitmaßnahmen, intensiver Physiotherapie, einer adäquaten Schmerztherapie und der Gabe von Neuroleptika.

Abstract

In recent years delirium in the intensive care unit (ICU) has internationally become a matter of rising concern for intensive care physicians. Due to the design of highly sophisticated ventilators the practice of deep sedation is nowadays mostly obsolete. To assess a ventilated ICU patient for delirium easy to handle bedside tests have been developed which permit a psychiatric scoring. The significance of ICU delirium is equivalent to organ failure and has been proven to be an independent prognostic factor for mortality and length of ICU and hospital stay. The pathophysiology and risk factors of ICU delirium are still insufficiently understood in detail. A certain constellation of pre-existing patient-related conditions, the current diagnosis and surgical procedure and administered medication entail a higher risk for the occurrence of ICU delirium. A favored hypothesis is that an imbalance of the neurotransmitters acetylcholine and dopamine serotonin results in an unpredictable neurotransmission. Currently, the administration of neuroleptics, enforced physiotherapy, re-orientation measures and appropriate pain treatment are the basis of the therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Polderman KH (2006) Screening methods for delirium: don’t get confused! Intensive Care Med 33:3–5

    PubMed  Google Scholar 

  2. Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477

    CAS  PubMed  Google Scholar 

  3. Benoit AG, Campbell BI, Tanner JR et al (2005) Risk factors and prevalence of perioperative cognitive dysfunction in abdominal aneurysm patients. J Vasc Surg 42:884–890

    PubMed  Google Scholar 

  4. Bohner H, Schneider F, Stierstorfer A et al (2000) Postoperative delirium following vascular surgery. Comparative results in a prospective study. Anaesthesist 49:427–433

    CAS  Google Scholar 

  5. Bergeron N, Dubois MJ, Dumont M et al (2001) Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med 27:859–864

    CAS  PubMed  Google Scholar 

  6. Ely EW, Margolin R, Francis J et al (2001) Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med 29:1370–1379

    CAS  PubMed  Google Scholar 

  7. Ely EW, Shintani A, Truman B et al (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762

    CAS  PubMed  Google Scholar 

  8. Tucker GJ (1999) The diagnosis of delirium and DSM-IV. Dement Geriatr Cogn Disord 10:359–363

    CAS  PubMed  Google Scholar 

  9. Prüter C (2005) Medikamentös induzierte Psychosen. Psychoneuroendocrinology 31:422–425

    Google Scholar 

  10. Hilger E, Fischer P (2002) Pathophysiologische Korrelate deliranter Syndrome. J Neurol Neurochir Psychiatr 3:32–40

    Google Scholar 

  11. Doyle M, Warden D (1996) Use of SPECT to evaluate postcardiotomy delirium. Am J Psychiatry 153:838–839

    CAS  PubMed  Google Scholar 

  12. Nagasawa H, Araki T, Kogure K (1994) Alteration of muscarinic acetylcholine binding sites in the postischemic brain areas of the rat using in vitro autoradiography. J Neurol Sci 121:27–31

    CAS  PubMed  Google Scholar 

  13. Ikarashi Y, Takahashi A, Ishimaru H et al (1997) Regulation of dopamine D1 and D2 receptors on striatal acetylcholine release in rats. Brain Res Bull 43:107–115

    CAS  PubMed  Google Scholar 

  14. Knell AJ, Davidson AR, Williams R et al (1974) Dopamine and serotonin metabolism in hepatic encephalopathy. Br Med J 1:549–551

    CAS  PubMed  Google Scholar 

  15. Hirano H, Day J, Fibiger HC (1995) Serotonergic regulation of acetylcholine release in rat frontal cortex. J Neurochem 65:1139–1145

    CAS  PubMed  Google Scholar 

  16. Meltzer HY (1993) Serotonin receptors and antipsychotic drug action. Psychopharmacol Ser 10:70–81

    CAS  PubMed  Google Scholar 

  17. Schafer DF, Jones EA (1982) Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. Lancet 1:18–20

    CAS  PubMed  Google Scholar 

  18. Hopkins MH, Silverman RB (1992) Beta-lactams: a new class of conformationally-rigid inhibitors of gamma-aminobutyric acid aminotransferase. J Enzyme Inhib 6:125–129

    CAS  PubMed  Google Scholar 

  19. Kleinschmidt S, Ziegeler S, Bauer C (2005) Cholinesterase inhibitors. Importance in anaesthesia, intensive care medicine, emergency medicine and pain therapy. Anaesthesist 54:791–799

    CAS  PubMed  Google Scholar 

  20. Abu-Omar Y, Cifelli A, Matthews PM, Taggart DP (2004) The role of microembolisation in cerebral injury as defined by functional magnetic resonance imaging. Eur J Cardiothorac Surg 26:586–591

    PubMed  Google Scholar 

  21. Pandharipande P, Jackson J, Ely EW (2005) Delirium: acute cognitive dysfunction in the critically ill. Curr Opin Crit Care 11:360–368

    PubMed  Google Scholar 

  22. Young GB, Bolton CF, Archibald YM et al (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9:145–152

    Article  CAS  PubMed  Google Scholar 

  23. Sprung CL, Peduzzi PN, Shatney CH et al (1990) Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med 18:801–806

    Article  CAS  PubMed  Google Scholar 

  24. Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275:470–473

    CAS  PubMed  Google Scholar 

  25. Zauner C, Gendo A, Kramer L et al (2002) Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit Care Med 30:1136–1139

    PubMed  Google Scholar 

  26. Zauner C, Gendo A, Kramer L et al (2000) Metabolic encephalopathy in critically ill patients suffering from septic or nonseptic multiple organ failure. Crit Care Med 28:1310–1315

    CAS  PubMed  Google Scholar 

  27. Ebersoldt M, Sharshar T, Annane D (2007) Sepsis-associated delirium. Intensive Care Med 33:941–950

    PubMed  Google Scholar 

  28. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362

    CAS  PubMed  Google Scholar 

  29. Annane D, Trabold F, Sharshar T et al (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 160:458–465

    CAS  PubMed  Google Scholar 

  30. Sharshar T, Annane D, de la Grandmaison GL et al (2004) The neuropathology of septic shock. Brain Pathol 14:21–33

    PubMed  Google Scholar 

  31. Roth J, Harre EM, Rummel C et al (2004) Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci 9:290–300

    CAS  PubMed  Google Scholar 

  32. Maier SF, Goehler LE, Fleshner M, Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840:289–300

    CAS  PubMed  Google Scholar 

  33. Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    CAS  PubMed  Google Scholar 

  34. Hofer S, Steppan J, Wagner T et al (2009) Central sympatholytics prolong survival in experimental sepsis. Crit Care 13:R11

    PubMed  Google Scholar 

  35. Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    CAS  PubMed  Google Scholar 

  36. Papadopoulos MC, Lamb FJ, Moss RF et al (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond) 96:461–466

    Google Scholar 

  37. Mayhan WG (1998) Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase. Brain Res 792:353–357

    CAS  PubMed  Google Scholar 

  38. Terborg C, Schummer W, Albrecht M et al (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27:1231–1234

    CAS  PubMed  Google Scholar 

  39. Chuang YC, Tsai JL, Chang AY et al (2002) Dysfunction of the mitochondrial respiratory chain in the rostral ventrolateral medulla during experimental endotoxemia in the rat. J Biomed Sci 9:542–548

    CAS  PubMed  Google Scholar 

  40. Lohrer P, Gloddek J, Nagashima AC et al (2000) Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38alpha mitogen-activated protein kinase/nuclear factor-kappaB pathway. Endocrinology 141:4457–4465

    CAS  PubMed  Google Scholar 

  41. Wang T, Qin L, Liu B et al (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88:939–947

    CAS  PubMed  Google Scholar 

  42. Sharshar T, Gray F, de la Grandmaison GL et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    CAS  PubMed  Google Scholar 

  43. Kadoi Y, Saito S, Kunimoto F et al (1996) Impairment of the brain beta-adrenergic system during experimental endotoxemia. J Surg Res 61:496–502

    CAS  PubMed  Google Scholar 

  44. Kadoi Y, Saito S (1996) An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med 24:298–305

    CAS  PubMed  Google Scholar 

  45. Pavlov VA, Ochani M, Gallowitsch-Puerta M et al (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A 103:5219–5223

    CAS  PubMed  Google Scholar 

  46. Vallieres L, Rivest S (1999) Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Endocrinology 140:3890–3903

    CAS  PubMed  Google Scholar 

  47. Hopkins RO, Jackson JC (2006) Long-term neurocognitive function after critical illness. Chest 130:869–878

    PubMed  Google Scholar 

  48. Pandharipande P, Jackson J, Ely EW (2005) Delirium: acute cognitive dysfunction in the critically ill. Curr Opin Crit Care 11:360–368

    PubMed  Google Scholar 

  49. O’Keeffee ST (1999) Delirium in the elderly. Age Ageing 28 [Suppl 2]:5–8

  50. Ouimet S, Kavanagh BP, Gottfried SB, Skrobik Y (2006) Incidence, risk factors and consequences of ICU delirium. Intensive Care Med 33:66–73

    PubMed  Google Scholar 

  51. Skrobik YK, Bergeron N, Dumont M, Gottfried SB (2004) Olanzapine vs haloperidol: treating delirium in a critical care setting. Intensive Care Med 30:444–449

    PubMed  Google Scholar 

  52. Weber JB, Coverdale JH, Kunik ME (2004) Delirium: current trends in prevention and treatment. Intern Med J 34:115–121

    CAS  PubMed  Google Scholar 

  53. Gallinat J, Moller H, Moser RL, Hegerl U (1999) Postoperative delirium: risk factors, prophylaxis and treatment. Anaesthesist 48:507–518

    CAS  PubMed  Google Scholar 

  54. Krauseneck T, Seemuller F, Krahenmann O et al (2006) Psychiatric disorders in the ICU I: delirium. Anasthesiol Intensivmed Notfallmed Schmerzther 41:720–726

    PubMed  Google Scholar 

  55. Dubois MJ, Bergeron N, Dumont M et al (2001) Delirium in an intensive care unit: a study of risk factors. Intensive Care Med 27:1297–1304

    CAS  PubMed  Google Scholar 

  56. Yoshimura Y, Kubo S, Shirata K et al (2004) Risk factors for postoperative delirium after liver resection for hepatocellular carcinoma. World J Surg 28:982–986

    PubMed  Google Scholar 

  57. Sockalingam S, Parekh N, Bogoch II et al (2005) Delirium in the postoperative cardiac patient: a review. J Card Surg 20:560–567

    PubMed  Google Scholar 

  58. Hestermann U, Thomas C, Oster P (2005) FRAGILE-Old people and surgery. Chirurg 76:28–34

    CAS  PubMed  Google Scholar 

  59. Trohman RG, Castellanos D, Castellanos A, Kessler KM (1988) Amiodarone-induced delirium. Ann Intern Med 108:68–69

    CAS  PubMed  Google Scholar 

  60. Barry JJ, Franklin K (1999) Amiodarone-induced delirium. Am J Psychiatry 156:1119

    CAS  PubMed  Google Scholar 

  61. Schubert DS, Gabinet L, Hershey LA (1984) Psychosis induced by sustained-release procainamide. Can Med Assoc J 131:1188, 1190

    CAS  PubMed  Google Scholar 

  62. Heckmann JG, Birklein F, Neundorfer B (2000) Omeprazole-induced delirium. J Neurol 247:56–57

    CAS  PubMed  Google Scholar 

  63. Stemmer C, Kampa U, Schlosser G (1994) Das zentral-anticholinerge Syndrom – Eine Übersicht mit Falldarstellung. Anaesthesiol Intensivmed 147–53

  64. Cook B, Spence AA (1997) Post-operative central anticholinergic syndrome. Eur J Anaesthesiol 14:1–2

    CAS  PubMed  Google Scholar 

  65. Milbrandt EB, Angus DC (2006) Bench-to-bedside review: critical illness-associated cognitive dysfunction – mechanisms, markers, and emerging therapeutics. Crit Care 10:238

    PubMed  Google Scholar 

  66. Muhl E (2006) Delirium and intensive care unit syndrome. Chirurg 77:463–471

    CAS  PubMed  Google Scholar 

  67. Aitkenhead AR (1989) Analgesia and sedation in intensive care. Br J Anaesth 63:196–206

    CAS  PubMed  Google Scholar 

  68. Jacobi J, Fraser GL, Coursin DB et al (2002) Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 30:119–141

    PubMed  Google Scholar 

  69. Martin J, Franck M, Fischer M, Spies C (2006) Sedation and analgesia in German intensive care units: how is it done in reality? Results of a patient-based survey of analgesia and sedation. Intensive Care Med 32:1137–1142

    PubMed  Google Scholar 

  70. Shehabi Y, Botha JA, Boyle MS et al (2008) Sedation and delirium in the intensive care unit: an Australian and New Zealand perspective. Anaesth Intensive Care 36:570–578

    CAS  PubMed  Google Scholar 

  71. Rhoney DH, Murry KR (2003) National survey of the use of sedating drugs, neuromuscular blocking agents, and reversal agents in the intensive care unit. J Intensive Care Med 18:139–145

    PubMed  Google Scholar 

  72. Marcantonio ER, Juarez G, Goldman L et al (1994) The relationship of postoperative delirium with psychoactive medications. JAMA 272:1518–1522

    CAS  PubMed  Google Scholar 

  73. Pandharipande P, Ely EW (2006) Sedative and analgesic medications: risk factors for delirium and sleep disturbances in the critically ill. Crit Care Clin 22:313–327, vii

    PubMed  Google Scholar 

  74. Shafer A (1998) Complications of sedation with midazolam in the intensive care unit and a comparison with other sedative regimens. Crit Care Med 26:947–956

    CAS  PubMed  Google Scholar 

  75. Kollef MH, Levy NT, Ahrens TS et al (1998) The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation. Chest 114:541–548

    CAS  PubMed  Google Scholar 

  76. Robinson BR, Mueller EW, Henson K et al (2008) An analgesia-delirium-sedation protocol for critically ill trauma patients reduces ventilator days and hospital length of stay. J Trauma 65:517–526

    CAS  PubMed  Google Scholar 

  77. Girard TD, Kress JP, Fuchs BD et al (2008) Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 371:126–134

    PubMed  Google Scholar 

  78. Riker RR, Fraser GL (2005) Adverse events associated with sedatives, analgesics, and other drugs that provide patient comfort in the intensive care unit. Pharmacotherapy 25:8S–18S

    CAS  PubMed  Google Scholar 

  79. Pandharipande P, Shintani A, Peterson J et al (2006) Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 104:21–26

    CAS  PubMed  Google Scholar 

  80. Carson SS, Kress JP, Rodgers JE et al (2006) A randomized trial of intermittent lorazepam vs. propofol with daily interruption in mechanically ventilated patients. Crit Care Med 34:1326–1332

    CAS  PubMed  Google Scholar 

  81. Hall RI, Sandham D, Cardinal P et al (2001) Propofol vs midazolam for ICU sedation: a Canadian multicenter randomized trial. Chest 119:1151–1159

    CAS  PubMed  Google Scholar 

  82. Kleinschmidt S, Mertzlufft F (1995) Gamma-hydroxybutyric acid – significance for anesthesia and intensive care medicine? Anasthesiol Intensivmed Notfallmed Schmerzther 30:393–402

    CAS  PubMed  Google Scholar 

  83. Maitre M (1997) The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 51:337–361

    CAS  PubMed  Google Scholar 

  84. Byas-Smith MG, Chapman SL, Reed B, Cotsonis G (2005) The effect of opioids on driving and psychomotor performance in patients with chronic pain. Clin J Pain 21:345–352

    PubMed  Google Scholar 

  85. Benyamin R, Trescot AM, Datta S et al (2008) Opioid complications and side effects. Pain Physician 11:S105–S120

    PubMed  Google Scholar 

  86. Shaw IR, Lavigne G, Mayer P, Choiniere M (2005) Acute intravenous administration of morphine perturbs sleep architecture in healthy pain-free young adults: a preliminary study. Sleep 28:677–682

    PubMed  Google Scholar 

  87. Dimsdale JE, Norman D, DeJardin D, Wallace MS (2007) The effect of opioids on sleep architecture. J Clin Sleep Med 3:33–36

    PubMed  Google Scholar 

  88. Slatkin N, Rhiner M (2004) Treatment of opioid-induced delirium with acetylcholinesterase inhibitors: a case report. J Pain Symptom Manage 27:268–273

    PubMed  Google Scholar 

  89. Oh YS, Kim DW, Chun HJ, Yi HJ (2008) Incidence and risk factors of acute postoperative delirium in geriatric neurosurgical patients. J Korean Neurosurg Soc 43:143–148

    PubMed  Google Scholar 

  90. Gaudreau JD, Gagnon P, Roy MA et al (2007) Opioid medications and longitudinal risk of delirium in hospitalized cancer patients. Cancer 109:2365–2373

    CAS  PubMed  Google Scholar 

  91. Elie M, Cole MG, Primeau FJ, Bellavance F (1998) Delirium risk factors in elderly hospitalized patients. J Gen Intern Med 13:204–212

    CAS  PubMed  Google Scholar 

  92. Gaudreau JD, Gagnon P, Harel F et al (2005) Psychoactive medications and risk of delirium in hospitalized cancer patients. J Clin Oncol 23:6712–6718

    CAS  PubMed  Google Scholar 

  93. Gaudreau JD, Gagnon P, Roy MA et al (2005) Association between psychoactive medications and delirium in hospitalized patients: a critical review. Psychosomatics 46:302–316

    PubMed  Google Scholar 

  94. Lynch EP, Lazor MA, Gellis JE et al (1998) The impact of postoperative pain on the development of postoperative delirium. Anesth Analg 86:781–785

    CAS  PubMed  Google Scholar 

  95. Marcantonio ER, Goldman L, Mangione CM et al (1994) A clinical prediction rule for delirium after elective noncardiac surgery. JAMA 271:134–139

    CAS  PubMed  Google Scholar 

  96. Vaurio LE, Sands LP, Wang Y et al (2006) Postoperative delirium: the importance of pain and pain management. Anesth Analg 102:1267–1273

    PubMed  Google Scholar 

  97. Wilhelm W, Kreuer S (2008) The place for short-acting opioids: special emphasis on remifentanil. Crit Care 12 [Suppl 3]:S5

  98. Gruber RP, Morley B (1999) Ketamine-assisted intravenous sedation with midazolam: benefits and potential problems. Plast Reconstr Surg 104:1823–1825

    CAS  PubMed  Google Scholar 

  99. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (2005) S2-Leitlinie: Analgesie und Sedierung in der Intensivmedizin. Anaesthesiol Intensivmed 1:S1–20

    Google Scholar 

  100. Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    CAS  PubMed  Google Scholar 

  101. Yamamura T, Harada K, Okamura A, Kemmotsu O (1990) Is the site of action of ketamine anesthesia the N-methyl-D-aspartate receptor? Anesthesiology 72:704–710

    CAS  PubMed  Google Scholar 

  102. Orser BA, Pennefather PS, MacDonald JF (1997) Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 86:903–917

    CAS  PubMed  Google Scholar 

  103. Udesky JO, Spence NZ, Achiel R et al (2005) The role of nicotinic inhibition in ketamine-induced behavior. Anesth Analg 101:407–411, table

    CAS  PubMed  Google Scholar 

  104. Lilburn JK, Dundee JW, Nair SG et al (1978) Ketamine sequelae. Evaluation of the ability of various premedicants to attenuate its psychic actions. Anaesthesia 33:307–311

    CAS  PubMed  Google Scholar 

  105. Dundee JW, Lilburn JK (1978) Ketamine-lorazepam. Attenuation of psychic sequelae of ketamine by lorazepam. Anaesthesia 33:312–314

    CAS  PubMed  Google Scholar 

  106. Streck EL, Comim CM, Barichello T, Quevedo J (2008) The septic brain. Neurochem Res 33:2171–2177

    CAS  PubMed  Google Scholar 

  107. White PF, Ham J, Way WL, Trevor AJ (1980) Pharmacology of ketamine isomers in surgical patients. Anesthesiology 52:231–239

    CAS  PubMed  Google Scholar 

  108. Sasaki T, Andoh T, Watanabe I et al (2000) Nonstereoselective inhibition of neuronal nicotinic acetylcholine receptors by ketamine isomers. Anesth Analg 91:741–748

    CAS  PubMed  Google Scholar 

  109. Gerlach AT, Dasta JF (2007) Dexmedetomidine: an updated review. Ann Pharmacother 41:245–252

    CAS  PubMed  Google Scholar 

  110. Nelson LE, Lu J, Guo T et al (2003) The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98:428–436

    CAS  PubMed  Google Scholar 

  111. Pandharipande PP, Pun BT, Herr DL et al (2007) Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 298:2644–2653

    CAS  PubMed  Google Scholar 

  112. Riker RR, Shehabi Y, Bokesch PM et al (2009) Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA 301:489–499

    CAS  PubMed  Google Scholar 

  113. Atkins JH, Mandel JE (2008) Recent advances in patient-controlled sedation. Curr Opin Anaesthesiol 21(6):759–765

    PubMed  Google Scholar 

  114. Sockalingam S, Parekh N, Bogoch II et al (2005) Delirium in the postoperative cardiac patient: a review. J Card Surg 20:560–567

    PubMed  Google Scholar 

  115. Ely EW, Stephens RK, Jackson JC et al (2004) Current opinions regarding the importance, diagnosis, and management of delirium in the intensive care unit: a survey of 912 healthcare professionals. Crit Care Med 32:106–112

    PubMed  Google Scholar 

  116. Milbrandt EB, Deppen S, Harrison PL et al (2004) Costs associated with delirium in mechanically ventilated patients. Crit Care Med 32:955–962

    PubMed  Google Scholar 

  117. Meyer NJ, Hall JB (2006) Brain dysfunction in critically ill patients – the intensive care unit and beyond. Crit Care 10:223

    PubMed  Google Scholar 

  118. Agnoletti V, Ansaloni L, Catena F et al (2005) Postoperative delirium after elective and emergency surgery: analysis and checking of risk factors. A study protocol. BMC Surg 5:12

    PubMed  Google Scholar 

  119. Ely EW, Truman B, Shintani A et al (2003) Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 289:2983–2991

    PubMed  Google Scholar 

  120. Ely EW (2002) The Confusion Assessment Method for the ICU (CAM-ICU) Training Manual. ICU Delirium and Cognitive Impairment Study Group. Vanderbilt University Medical Center, Nashville

  121. Ely EW, Inouye SK, Bernard GR et al (2001) Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 286:2703–2710

    CAS  PubMed  Google Scholar 

  122. Plaschke K, Haken R von, Scholz M et al (2008) Comparison of the confusion assessment method for the intensive care unit (CAM-ICU) with the Intensive Care Delirium Screening Checklist (ICDSC) for delirium in critical care patients gives high agreement rate(s). Intensive Care Med 34:431–436

    PubMed  Google Scholar 

  123. Finfer S, Chittock DR, Su SY et al (2009) Intensive vs. conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297

    PubMed  Google Scholar 

  124. Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    CAS  PubMed  Google Scholar 

  125. Nelson LE, Guo TZ, Lu J et al (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984

    CAS  PubMed  Google Scholar 

  126. Zecharia AY, Nelson LE, Gent TC et al (2009) The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265 M knock-in mouse. J Neurosci 29:2177–2187

    CAS  PubMed  Google Scholar 

  127. Hanania M, Kitain E (2002) Melatonin for treatment and prevention of postoperative delirium. Anesth Analg 94:338–389, table

    PubMed  Google Scholar 

  128. Wang Y, Sands LP, Vaurio L et al (2007) The effects of postoperative pain and its management on postoperative cognitive dysfunction. Am J Geriatr Psychiatry 15:50–59

    CAS  PubMed  Google Scholar 

  129. Muellejans B, Lopez A, Cross MH et al (2004) Remifentanil vs. fentanyl for analgesia based sedation to provide patient comfort in the intensive care unit: a randomized, double-blind controlled trial [ISRCTN43755713]. Crit Care 8:R1–R11

    PubMed  Google Scholar 

  130. Muellejans B, Matthey T, Scholpp J, Schill M (2006) Sedation in the intensive care unit with remifentanil/propofol vs. midazolam/fentanyl: a randomised, open-label, pharmacoeconomic trial. Crit Care 10:R91

    PubMed  Google Scholar 

  131. Someya T, Endo T, Hara T et al (2001) A survey on the drug therapy for delirium. Psychiatry Clin Neurosci 55:397–401

    CAS  PubMed  Google Scholar 

  132. Milbrandt EB, Kersten A, Kong L et al (2005) Haloperidol use is associated with lower hospital mortality in mechanically ventilated patients. Crit Care Med 33:226–229

    CAS  PubMed  Google Scholar 

  133. Kalisvaart KJ, Vreeswijk R, Jonghe JF de et al (2006) Risk factors and prediction of postoperative delirium in elderly hip-surgery patients: implementation and validation of a medical risk factor model. J Am Geriatr Soc 54:817–822

    PubMed  Google Scholar 

  134. Lonergan E, Britton AM, Luxenberg J, Wyller T (2007) Antipsychotics for delirium. Cochrane Database Syst Rev: CD005594

    Google Scholar 

  135. Saurer TB, Carrigan KA, Ijames SG, Lysle DT (2004) Morphine-induced alterations of immune status are blocked by the dopamine D2-like receptor agonist 7-OH-DPAT. J Neuroimmunol 148:54–62

    CAS  PubMed  Google Scholar 

  136. Alkharfy KM, Kellum JA, Matzke GR (2000) Unintended immunomodulation: part II. Effects of pharmacological agents on cytokine activity. Shock 13:346–360

    CAS  PubMed  Google Scholar 

  137. Caroff SN, Rosenberg H, Mann SC et al (2002) Neuroleptic malignant syndrome in the critical care unit. Crit Care Med 30:2609–2610

    PubMed  Google Scholar 

  138. Young CC, Lujan E (2004) Intravenous ziprasidone for treatment of delirium in the intensive care unit. Anesthesiology 101:794–795

    PubMed  Google Scholar 

  139. Plaschke K, Hill H, Engelhardt R et al (2007) EEG changes and serum anticholinergic activity measured in patients with delirium in the intensive care unit. Anaesthesia 62:1217–1223

    CAS  PubMed  Google Scholar 

  140. Plaschke K, Thomas C, Engelhardt R et al (2007) Significant correlation between plasma and CSF anticholinergic activity in presurgical patients. Neurosci Lett 417:16–20

    CAS  PubMed  Google Scholar 

  141. Wang H, Wu YB, Du XH (2005) Effect of dexamethasone on nitric oxide synthase and caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 18:181–186

    CAS  PubMed  Google Scholar 

  142. Lopez A, Lorente JA, Steingrub J et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30

    CAS  PubMed  Google Scholar 

  143. Veszelka S, Urbanyi Z, Pazmany T et al (2003) Human serum amyloid P component attenuates the bacterial lipopolysaccharide-induced increase in blood-brain barrier permeability in mice. Neurosci Lett 352:57–60

    CAS  PubMed  Google Scholar 

  144. Esen F, Erdem T, Aktan D et al (2005) Effect of magnesium sulfate administration on blood-brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study. Crit Care 9:R18–R23

    PubMed  Google Scholar 

  145. Abd El-Gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and L-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263

    Google Scholar 

  146. Bi XL, Yang JY, Dong YX et al (2005) Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5:185–193

    CAS  PubMed  Google Scholar 

  147. Skrobik Y (2003) An overview of delirium in the critical care setting. Geriatr Aging 6:30–35

    Google Scholar 

Download references

Interessenskonflikt

Es besteht kein Interessenskonflikt. Der Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt genannt wird oder mit einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. von Haken.

Additional information

R. von Haken und M. Gruß haben zu gleichen Teilen zu dieser Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Haken, R., Gruß, M., Plaschke, K. et al. Delir auf der Intensivstation. Anaesthesist 59, 235–247 (2010). https://doi.org/10.1007/s00101-009-1664-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-009-1664-3

Schlüsselwörter

Keywords

Navigation