Skip to main content
Log in

Pharmakokinetische und pharmakodynamische Aspekte bei der Antibiotikatherapie

Pharmacokinetic and pharmacodynamic aspects in antibiotic treatment

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Die schwere Sepsis und der septische Schock haben eine hohe Mortalität und erfordern daher eine rasch wirksame verträgliche antibiotische Therapie. Aufgrund pathophysiologischer Vorgänge im Rahmen einer Sepsis kann sich die Pharmakokinetik verändern. Vor allem wasserlösliche Substanzen haben am Beginn einer schweren Sepsis ein erhöhtes Verteilungsvolumen, weshalb eine hohe Anfangsdosis erforderlich ist. Auch die renale Ausscheidung kann zunächst erhöht sein. Im weiteren Krankheitsverlauf kommt es häufig zu Organschäden mit verminderter Elimination, was eine neuerliche Dosisanpassung erfordert. Die Antibiotikaklassen unterscheiden sich in ihren relevanten pharmakokinetisch-pharmakodynamischen Zielparametern. Spitzenkonzentration, Expositionszeit oder Gesamtexposition, ausgedrückt durch die Fläche unter der Konzentrations-Zeit-Kurve, können für ihre Wirksamkeit ausschlaggebend sein. Bei der Behandlung mit zeitabhängigen Antibiotika (z. B. mit β-Lactamen) sollte der Wirkspiegel möglichst konstant über der minimalen Hemmkonzentration (MHK) gehalten werden, was eine häufigere, eventuell auch eine kontinuierliche Verabreichung nahelegt. Bei konzentrationsabhängigen Substanzen (z. B. bei Aminoglykosiden) ist die Höhe der Einzeldosis maßgeblich, während das Dosisintervall angepasst werden kann. Wechselwirkungen mit Antibiotika werden v. a. durch Hemmung des Abbaus, insbesondere von Cytochrom-P-450-Isoenzymen sowie durch Summation toxischer Effekte hervorgerufen. Sie können zu schweren Komplikationen, wie Nierenversagen oder ventrikulären Rhythmusstörungen, führen. Eine Enzyminduktion kann subtherapeutische Spiegel bewirken. Ist eine kontinuierliche Ersatztherapie notwendig, sind die Antibiotikadosierungen entsprechend den Ergebnissen einschlägiger Studien anzupassen.

Abstract

Severe sepsis and septic shock have a high mortality and, therefore require fast and effective antibiotic treatment with low toxicity. Because of sepsis-induced pathophysiological changes, pharmacokinetics of antimicrobial agents can be altered. Particularly water-soluble drugs display an enhanced volume of distribution during early sepsis. Therefore high loading doses are necessary. Renal clearance can also be increased at this time. Later on, organ damage frequently occurs resulting in delayed drug elimination which requires further dose adjustment. The different classes of antibiotics differ in their relevant pharmacokinetic–pharmacodynamic target parameters. Thus, the efficacy of an antimicrobial agent can depend on its concentration, on the exposure time, and on the total exposure as expressed by the area under the time–concentration curve. During treatment with time-dependent antibiotics (e.g. β-lactams), their concentration should be maintained above the minimal inhibitory concentration (MIC) warranting more frequent administration or continuous infusion. For concentration dependent agents (e.g. aminoglycosides), the single dose is pivotal, whereas the dosage interval can be extended. Drug–drug interactions involving antibiotics are mainly caused by inhibition of their metabolism, particularly of cytochrome P 450 iso-enzymes, or by additive toxic effects. They can result in severe complications such as renal failure or ventricular arrhythmias. Conversely, enzyme induction may lead to subtherapeutic drug levels. When continuous renal replacement therapy is required, the dosage of antibiotics has to be adapted according to the results of respective pharmacokinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Allaouchiche B, Breilh D, Jaumain H et al (1997) Pharmacokinetics of cefepime during continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 41:2424–2427

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bellmann R (2007) Clinical pharmacokinetics of systemically administered antimycotics. Curr Clin Pharmacol 2:37–58

    Article  CAS  PubMed  Google Scholar 

  3. Bellmann R (2013) Pharmacodynamics and pharmacokinetics of antifungals for treatment of invasive aspergillosis. Curr Pharm Des 19:3629–3647

    Article  CAS  PubMed  Google Scholar 

  4. Bellmann R, Egger P, Gritsch W et al (2002) Elimination of levofloxacin in critically ill patients with renal failure: influence of continuous veno-venous hemofiltration. Int J Clin Pharmacol Ther 40:142–149

    Article  CAS  PubMed  Google Scholar 

  5. Bellmann R, Egger P, Gritsch W et al (2002) Pharmacokinetics of ciprofloxacin in patients with acute renal failure undergoing continuous venovenous haemofiltration: influence of concomitant liver cirrhosis. Acta Med Austriaca 29:112–116

    Article  CAS  PubMed  Google Scholar 

  6. Bellmann R, Egger P, Gritsch W et al (2003) Amphotericin B lipid formulations in critically ill patients on continuous veno-venous haemofiltration. J Antimicrob Chemother 51:671–681

    Article  CAS  PubMed  Google Scholar 

  7. Bellmann R, Falkensammer G, Seger C et al (2010) Teicoplanin pharmacokinetics in critically ill patients on continuous veno-venous hemofiltration. Int J Clin Pharmacol Ther 48:243–249

    CAS  PubMed  Google Scholar 

  8. Bergman SJ, Speil C, Short M et al (2007) Pharmacokinetic and pharmacodynamic aspects of antibiotic use in high-risk populations. Infect Dis Clin North Am 21:821–846

    Article  PubMed  Google Scholar 

  9. Bergner R, Hoffmann M, Riedel KD et al (2006) Fluconazole dosing in continuous veno-venous haemofiltration (CVVHF): need for a high daily dose of 800 mg. Nephrol Dial Transplant 21:1019–1023

    Article  CAS  PubMed  Google Scholar 

  10. Boereboom FT, Ververs FF, Blankestijn PJ et al (1999) Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients. Intensive Care Med 25:1100–1104

    Article  CAS  PubMed  Google Scholar 

  11. Choi G, Gomersall CD, Tian Q et al (2009) Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med 37:2268–2282

    Article  CAS  PubMed  Google Scholar 

  12. Curkovic I, Lüthi B, Franzen D et al (2010) Trimethoprim/Sulfamethoxazole pharmacokinetics in two patients undergoing continuous venovenous hemodiafiltration. Ann Pharmacother 44:1669–1672

    Article  PubMed  Google Scholar 

  13. Fuhrmann V, Schenk P, Jaeger W et al (2007) Pharmacokinetics of voriconazole during continuous venovenous haemodiafiltration. J Antimicrob Chemother 60:1085–1090

    Article  CAS  PubMed  Google Scholar 

  14. Gattringer R, Meyer B, Heinz G et al (2006) Single-dose pharmacokinetics of fosfomycin during continuous venovenous haemofiltration. J Antimicrob Chemother 58:367–371

    Article  CAS  PubMed  Google Scholar 

  15. Leitner JM, Meyer B, Fuhrmann V et al (2011) Multiple-dose pharmacokinetics of anidulafungin during continuous venovenous haemofiltration. J Antimicrob Chemother 66:880–884

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Rayner CR, Nation RL et al (2005) Pharmacokinetics of colistin methanesulfonate and colistin in a critically ill patient receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 49:4814–4815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Meyer B, Ahmed el Gendy S, Delle Karth G et al (2003) How to calculate clearance of highly protein-bound drugs during continuous venovenous hemofiltration demonstrated with flucloxacillin. Kidney Blood Press Res 26:135–140

    Article  CAS  PubMed  Google Scholar 

  18. Meyer B, Kornek GV, Nikfardjam M et al (2005) Multiple-dose pharmacokinetics of linezolid during continuous venovenous haemofiltration. J Antimicrob Chemother 56:172–179

    Article  CAS  PubMed  Google Scholar 

  19. Pea F (2013) Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol 8:5–12

    CAS  PubMed  Google Scholar 

  20. Pea F, Viale P, Furlanut M (2005) Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 44:1009–1034

    Article  CAS  PubMed  Google Scholar 

  21. Pereira JM, Paiva JA (2013) Antimicrobial drug interactions in the critically ill patients. Curr Clin Pharmacol 8:25–38

    CAS  PubMed  Google Scholar 

  22. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851 (quiz 859)

    Article  CAS  PubMed  Google Scholar 

  23. Smuszkiewicz P, Szałek E, Tomczak H et al (2013) Continuous infusion of antibiotics in critically ill patients. Curr Clin Pharmacol 8:13–24

    CAS  PubMed  Google Scholar 

  24. Tegeder I, Bremer F, Oelkers R et al (1997) Pharmacokinetics of imipenem-cilastatin in critically ill patients undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother 41:2640–2645

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Thalhammer F, Schenk P, Burgmann H et al (1998) Single-dose pharmacokinetics of meropenem during continuous venovenous hemofiltration. Antimicrob Agents Chemother 42:2417–2420

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Traunmüller F, Schenk P, Mittermeyer C et al (2002) Clearance of ceftazidime during continuous venovenous haemofiltration in critically ill patients. J Antimicrob Chemother 49:129–134

    Article  PubMed  Google Scholar 

  27. Valtonen M, Tiula E, Takkunen O et al (2001) Elimination of the piperacillin/tazobactam combination during continuous venovenous haemofiltration and haemodiafiltration in patients with acute renal failure. J Antimicrob Chemother 48:881–885

    Article  CAS  PubMed  Google Scholar 

  28. Varghese JM, Roberts JA, Lipman J (2011) Antimicrobial pharmacokinetic and pharmacodynamic issues in the critically ill with severe sepsis and septic shock. Crit Care Clin 27:19–34

    Article  CAS  PubMed  Google Scholar 

  29. Weiler S, Seger C, Pfisterer H et al (2013) Pharmacokinetics of caspofungin in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother 57:4053–4057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Bellmann gibt an, Forschungsunterstützungen und Vortragshonorare von den Firmen Chiesi Pharmaceuticals, Pfizer, und Merck, Sharp und Dohme erhalten zu haben.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bellmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellmann, R. Pharmakokinetische und pharmakodynamische Aspekte bei der Antibiotikatherapie. Med Klin Intensivmed Notfmed 109, 162–166 (2014). https://doi.org/10.1007/s00063-013-0308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-013-0308-1

Schlüsselwörter

Keywords

Navigation