Skip to main content

Advertisement

Log in

Early trypsin activation develops independently of autophagy in caerulein-induced pancreatitis in mice

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Premature intrapancreatic trypsinogen activation is widely regarded as an initiating event for acute pancreatitis. Previous studies have alternatively implicated secretory vesicles, endosomes, lysosomes, or autophagosomes/autophagolysosomes as the primary site of trypsinogen activation, from which a cell-damaging proteolytic cascade originates. To identify the subcellular compartment of initial trypsinogen activation we performed a time-resolution analysis of the first 12 h of caerulein-induced pancreatitis in transgenic light chain 3 (LC3)-GFP autophagy reporter mice. Intrapancreatic trypsin activity increased within 60 min and serum amylase within 2 h, but fluorescent autophagosome formation only by 4 h of pancreatitis in parallel with a shift from cytosolic LC3-I to membranous LC3-II on Western blots. At 60 min, activated trypsin in heavier subcellular fractions was co-distributed with cathepsin B, but not with the autophagy markers LC3 or autophagy protein 16 (ATG16). Supramaximal caerulein stimulation of primary pancreatic acini derived from LC3-GFP mice revealed that trypsinogen activation is independent of autophagolysosome formation already during the first 15 min of exposure to caerulein. Co-localization studies (with GFP-LC3 autophagosomes versus Ile–Pro–Arg–AMC trypsin activity and immunogold-labelling of lysosomal-associated membrane protein 2 [LAMP-2] versus trypsinogen activation peptide [TAP]) indicated active trypsin in autophagolysosomes only at the later timepoints. In conclusion, during the initiating phase of caerulein-induced pancreatitis, premature protease activation develops independently of autophagolysosome formation and in vesicles arising from the secretory pathway. However, autophagy is likely to regulate overall intracellular trypsin activity during the later stages of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Em:

Emission

Ex:

Excitation

AMC:

7-Amido 4-methylcoumarin

MAP-LC3:

Microtubule-associated protein 1-light chain 3

GFP:

Green fluorescent protein

FITC:

Fluorescein isothiocyanate

h:

Hour

References

  1. Whitcomb DC, Gorry MC, Preston RA et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145. https://doi.org/10.1038/ng1096-141

    Article  CAS  PubMed  Google Scholar 

  2. Witt H, Luck W, Hennies HC et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25:213–216. https://doi.org/10.1038/76088

    Article  CAS  PubMed  Google Scholar 

  3. Whitcomb DC, LaRusch J, Krasinskas AM et al (2012) Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat Genet 44:1349–1354. https://doi.org/10.1038/ng.2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaiser S, Daniluk J, Liu Y et al (2011) Intracellular activation of trypsinogen in transgenic mice induces acute but not chronic pancreatitis. Gut 60:1379–1388. https://doi.org/10.1136/gut.2010.226175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dawra R, Sah RP, Dudeja V et al (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141:2210–2217.e2. https://doi.org/10.1053/j.gastro.2011.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neoptolemos JP, Kemppainen EA, Mayer JM et al (2000) Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide: a multicentre study. Lancet Lond Engl 355:1955–1960

    Article  CAS  Google Scholar 

  7. Hofbauer B, Saluja AK, Lerch MM et al (1998) Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. Am J Physiol 275:G352–G362

    Article  CAS  Google Scholar 

  8. Grady T, Mah’Moud M, Otani T et al (1998) Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. Am J Physiol 275:G1010–G1017

    CAS  PubMed  Google Scholar 

  9. Halangk W, Lerch MM, Brandt-Nedelev B et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781. https://doi.org/10.1172/JCI9411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krüger B, Albrecht E, Lerch MM (2000) The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 157:43–50. https://doi.org/10.1016/S0002-9440(10)64515-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mayerle J, Schnekenburger J, Krüger B et al (2005) Extracellular cleavage of E-cadherin by leukocyte elastase during acute experimental pancreatitis in rats. Gastroenterology 129:1251–1267. https://doi.org/10.1053/j.gastro.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Sendler M, Dummer A, Weiss FU et al (2013) Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62:430–439. https://doi.org/10.1136/gutjnl-2011-300771

    Article  CAS  PubMed  Google Scholar 

  13. Halangk W, Krüger B, Ruthenbürger M et al (2002) Trypsin activity is not involved in premature, intrapancreatic trypsinogen activation. Am J Physiol Gastrointest Liver Physiol 282:G367–G374. https://doi.org/10.1152/ajpgi.00315.2001

    Article  CAS  PubMed  Google Scholar 

  14. Sendler M, Maertin S, John D et al (2016) Cathepsin B activity initiates apoptosis via digestive protease activation in pancreatic acinar cells and experimental pancreatitis. J Biol Chem 291:14717–14731. https://doi.org/10.1074/jbc.M116.718999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mooren FC, Turi S, Gunzel D et al (2001) Calcium-magnesium interactions in pancreatic acinar cells. FASEB J Off Publ Fed Am Soc Exp Biol 15:659–672. https://doi.org/10.1096/fj.00-0172com

    Article  CAS  Google Scholar 

  16. Schick V, Scheiber JA, Mooren FC et al (2014) Effect of magnesium supplementation and depletion on the onset and course of acute experimental pancreatitis. Gut 63:1469–1480. https://doi.org/10.1136/gutjnl-2012-304274

    Article  CAS  PubMed  Google Scholar 

  17. Hirano T, Saluja A, Ramarao P et al (1991) Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J Clin Invest 87:865–869. https://doi.org/10.1172/JCI115091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherwood MW, Prior IA, Voronina SG et al (2007) Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells. Proc Natl Acad Sci USA 104:5674–5679. https://doi.org/10.1073/pnas.0700951104

    Article  CAS  PubMed  Google Scholar 

  19. Behrendorff N, Floetenmeyer M, Schwiening C, Thorn P (2010) Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139(1711–1720):1720–1725. https://doi.org/10.1053/j.gastro.2010.07.051

    Article  CAS  Google Scholar 

  20. Behrendorff N, Dolai S, Hong W et al (2011) Vesicle-associated membrane protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem 286:29627–29634. https://doi.org/10.1074/jbc.M111.265199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashimoto D, Ohmuraya M, Hirota M et al (2008) Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 181:1065–1072. https://doi.org/10.1083/jcb.200712156

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mareninova OA, Hermann K, French SW et al (2009) Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest 119:3340–3355. https://doi.org/10.1172/JCI38674

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mayerle J, Sendler M, Hegyi E et al (2019) Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 156:1951–1968.e1. https://doi.org/10.1053/j.gastro.2018.11.081

    Article  CAS  PubMed  Google Scholar 

  24. Lerch MM, Gorelick FS (2000) Early trypsinogen activation in acute pancreatitis. Med Clin North Am 84:549–563

    Article  CAS  Google Scholar 

  25. Kukor Z, Mayerle J, Krüger B et al (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277:21389–21396. https://doi.org/10.1074/jbc.M200878200

    Article  CAS  PubMed  Google Scholar 

  26. Aghdassi AA, John DS, Sendler M et al (2018) Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis. J Biol Chem 293:1018–1029. https://doi.org/10.1074/jbc.M117.814772

    Article  CAS  PubMed  Google Scholar 

  27. Lampel M, Kern HF (1977) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol 373:97–117

    Article  CAS  Google Scholar 

  28. Lerch MM, Saluja AK, Rünzi M et al (1995) Luminal endocytosis and intracellular targeting by acinar cells during early biliary pancreatitis in the opossum. J Clin Invest 95:2222–2231. https://doi.org/10.1172/JCI117912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheele G, Adler G, Kern H (1987) Exocytosis occurs at the lateral plasma membrane of the pancreatic acinar cell during supramaximal secretagogue stimulation. Gastroenterology 92:345–353

    Article  CAS  Google Scholar 

  30. Lerch MM, Saluja AK, Dawra R et al (1993) The effect of chloroquine administration on two experimental models of acute pancreatitis. Gastroenterology 104:1768–1779

    Article  CAS  Google Scholar 

  31. Meister T, Niehues R, Hahn D et al (2010) Missorting of cathepsin B into the secretory compartment of CI-MPR/IGFII-deficient mice does not induce spontaneous trypsinogen activation but leads to enhanced trypsin activity during experimental pancreatitis—without affecting disease severity. J Physiol Pharmacol Off J Pol Physiol Soc 61:565–575

    CAS  Google Scholar 

  32. Tooze J, Hollinshead M, Ludwig T et al (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111:329–345

    Article  CAS  Google Scholar 

  33. Mareninova OA, Sendler M, Malla SR et al (2015) Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell Mol Gastroenterol Hepatol 1:678. https://doi.org/10.1016/j.jcmgh.2015.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fortunato F, Bürgers H, Bergmann F et al (2009) Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 137(350–360):360–365. https://doi.org/10.1053/j.gastro.2009.04.003

    Article  Google Scholar 

  35. Diakopoulos KN, Lesina M, Wörmann S et al (2015) Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology 148:626–638.e17. https://doi.org/10.1053/j.gastro.2014.12.003

    Article  PubMed  Google Scholar 

  36. Grasso D, Ropolo A, Lo Ré A et al (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 286:8308–8324. https://doi.org/10.1074/jbc.M110.197301

    Article  CAS  PubMed  Google Scholar 

  37. Gukovsky I, Li N, Todoric J et al (2013) Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144:1199–1209.e4. https://doi.org/10.1053/j.gastro.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi K, Mashima H, Miura K et al (2017) Disruption of small GTPase Rab7 exacerbates the severity of acute pancreatitis in experimental mouse models. Sci Rep 7:2817. https://doi.org/10.1038/s41598-017-02988-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wartmann T, Mayerle J, Kähne T et al (2010) Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 138:726–737. https://doi.org/10.1053/j.gastro.2009.10.048

    Article  CAS  PubMed  Google Scholar 

  40. Mizushima N, Kuma A (2008) Autophagosomes in GFP-LC3 transgenic mice. Methods Mol Biol Clifton NJ 445:119–124. https://doi.org/10.1007/978-1-59745-157-4_7

    Article  CAS  Google Scholar 

  41. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. https://doi.org/10.1093/emboj/19.21.5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chvanov M, De Faveri F, Moore D et al (2018) Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: initiating events in acute pancreatitis. J Physiol 596:2547–2564. https://doi.org/10.1113/JP275879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zenker M, Mayerle J, Lerch MM et al (2005) Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat Genet 37:1345–1350. https://doi.org/10.1038/ng1681

    Article  CAS  PubMed  Google Scholar 

  44. Lerch MM, Saluja AK, Dawra R et al (1992) Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology 103:205–213

    Article  CAS  Google Scholar 

  45. Chiari H (1896) Über die Selbstverdauung des menschlichen Pankreas. Z Für Heilkd 69–96

  46. Saluja AK, Lerch MM, Phillips PA, Dudeja V (2007) Why does pancreatic overstimulation cause pancreatitis? Annu Rev Physiol 69:249–269. https://doi.org/10.1146/annurev.physiol.69.031905.161253

    Article  CAS  PubMed  Google Scholar 

  47. Grocock CJ, Rebours V, Delhaye MN et al (2010) The variable phenotype of the p. A16V mutation of cationic trypsinogen (PRSS1) in pancreatitis families. Gut 59:357–363. https://doi.org/10.1136/gut.2009.186817

    Article  CAS  PubMed  Google Scholar 

  48. Simon P, Weiss FU, Sahin-Toth M et al (2002) Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122 – > Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem 277:5404–5410. https://doi.org/10.1074/jbc.M108073200

    Article  CAS  PubMed  Google Scholar 

  49. Weiss FU, Simon P, Bogdanova N et al (2005) Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut 54:1456–1460. https://doi.org/10.1136/gut.2005.064808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weiss FU, Schurmann C, Guenther A et al (2015) Fucosyltransferase 2 (FUT2) non-secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects, and an increased risk for chronic pancreatitis: a genetic association study. Gut 64:646–656. https://doi.org/10.1136/gutjnl-2014-306930

    Article  CAS  PubMed  Google Scholar 

  51. Fjeld K, Weiss FU, Lasher D et al (2015) A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nat Genet 47:518–522. https://doi.org/10.1038/ng.3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Witt H, Sahin-Tóth M, Landt O et al (2006) A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet 38:668–673. https://doi.org/10.1038/ng1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosendahl J, Witt H, Szmola R et al (2008) Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 40:78–82. https://doi.org/10.1038/ng.2007.44

    Article  CAS  PubMed  Google Scholar 

  54. Witt H, Beer S, Rosendahl J et al (2013) Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet 45:1216–1220. https://doi.org/10.1038/ng.2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weiss FU, Simon P, Witt H et al (2003) SPINK1 mutations and phenotypic expression in patients with pancreatitis associated with trypsinogen mutations. J Med Genet 40:e40

    Article  CAS  Google Scholar 

  56. Zhan X, Wan J, Zhang G et al (2019) Elevated intracellular trypsin exacerbates acute pancreatitis and chronic pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 316:G816–G825. https://doi.org/10.1152/ajpgi.00004.2019

    Article  CAS  PubMed  Google Scholar 

  57. Geisz A, Sahin-Tóth M (2018) A preclinical model of chronic pancreatitis driven by trypsinogen autoactivation. Nat Commun 9:5033. https://doi.org/10.1038/s41467-018-07347-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saluja AK, Donovan EA, Yamanaka K et al (1997) Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113:304–310. https://doi.org/10.1016/s0016-5085(97)70108-2

    Article  CAS  PubMed  Google Scholar 

  59. Zhu Z-D, Yu T, Liu H-J et al (2018) SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis 9:50. https://doi.org/10.1038/s41419-017-0073-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sendler M, Weiss F-U, Golchert J et al (2018) Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology 154:704–718.e10. https://doi.org/10.1053/j.gastro.2017.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Deutsche Krebshilfe/Dr. Mildred-Scheel-Stiftung (109102), the Deutsche Forschungsgemeinschaft (DFG GRK840-D2/E3/E4, GRK1947-A3, MA 4115/1-2/3, AG 203/2-1, SE 2702/2-1), the Federal Ministry of Education and Research (BMBF GANI-MED 03IS2061A and BMBF 0314107, 01ZZ9603, 01ZZ0103, 01ZZ0403, 03ZIK012) and the European Union (EU-FP-7: EPC-TM and EU-FP7-REGPOT-2010-1, TBI-V-1-083-VBW-028, PePPP center of excellence MV ESF/14-BM-A55-0045/16; ESF MV V-630-S-150-2012/132/133),). FSG and AG are supported by Veterans Administration Merit Awards.

Author information

Authors and Affiliations

Authors

Contributions

SRM, BK, TW, MS, UMM, FGT, and CDB were involved in data acquisition, analysis, and interpretation of data, and drafting and revision of the manuscript. FUW, FSG, WH, TR, AA, and AG were involved in critical analysis of data, interpretation, and manuscript revision; JM, SRM, WH, TR, and MML: study concept and design, drafting of the manuscript, and obtained funding, study supervision.

Corresponding author

Correspondence to Markus M. Lerch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malla, S.R., Krueger, B., Wartmann, T. et al. Early trypsin activation develops independently of autophagy in caerulein-induced pancreatitis in mice. Cell. Mol. Life Sci. 77, 1811–1825 (2020). https://doi.org/10.1007/s00018-019-03254-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03254-7

Keywords

Navigation