Skip to main content
Log in

The involvement of astrocytes and kynurenine pathway in Alzheimer’s disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The kynurenine pathway (KP) and several of its neuroactive products, especially quinolinic acid (QUIN), are considered to be involved in the neuropathogenesis of Alzheimer’s disease (AD). There is growing evidence suggesting that astrocytes play a critical role in the regulation of the excitotoxicity and inflammatory processes that occur during the evolution of AD. This review focuses on the role of astrocytes through their relation with the KP to the different features associated with AD including cytokine, chemokine and, adhesion molecule production, cytoskeletal changes, astrogliosis, excitotoxicity, apoptosis and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama H, S Barger, S Barnum, B Bradt, J Bauer, GM Cole, NR Cooper, P Eikelenboom, M Emmerling, BL Fiebich, CE Finch, S Frautschy, WS Griffin, H Hampel, M Hull, G Landreth, L Lue, R Mrak, IR Mackenzie, PL McGeer, MK O’Banion, J Pachter, G Pasinetti, C Plata-Salaman, J Rogers, R Rydel, Y Shen, W Streit, R Strohmeyer, I Tooyoma, FL Van Miuswinkel, R Veerhuis, D Walker, S Webster, B Wegrzyniak, G Wenk and T Wyss-Coray (2000) Inflammation and Alzheimer’s disease.Neurobiol. Aging 21, 383–421.

    PubMed  CAS  Google Scholar 

  • Anderson CM and RA Swanson (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions.Glia 32, 1–14.

    PubMed  CAS  Google Scholar 

  • Aschner M (1998a) Astrocytes as mediators of immune and inflammatory responses in the CNS.Neurotoxicology 19, 269–281.

    PubMed  CAS  Google Scholar 

  • Aschner M (1998b) Immune and inflammatory responses in the CNS: modulation by astrocytes.Toxicol. Lett. 102–103, 283–287.

    PubMed  Google Scholar 

  • Bacci A, G Sancini, C Verderio, S Armano, E Pravettoni, R Fesce, S Franceschetti and M Matteoli (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus.J. Neurophysiol. 88, 2302–2310.

    PubMed  CAS  Google Scholar 

  • Ballabh P, A Braun and M Nedergaard (2004) The blood-brain barrier, an overview: structure, regulation, and clinical implications.Neurobiol. Dis. 16, 1–13.

    PubMed  CAS  Google Scholar 

  • Baran H, K Jellinger and L Deecke (1999) Kynurenine metabolism in Alzheimer’s disease.J. Neural Transm. 106, 165–181.

    PubMed  CAS  Google Scholar 

  • Beal MF, WR Matson, KJ Swartz, PH Gamache and ED Bird (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid.J. Neurochem. 55, 1327–1339.

    PubMed  CAS  Google Scholar 

  • Bender DA and GM McCreanor (1982) The preferred route of kynurenine metabolism in the rat.Biochim. Biophys. Acta 717, 56–60.

    PubMed  CAS  Google Scholar 

  • Beninger RJ, AM Colton, JL Ingles, K Jhamandas and RJ Boegman (1994) Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry.Neuroscience 61, 603–612.

    PubMed  CAS  Google Scholar 

  • Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action.Am. Physiol. Soc., C1–C16.

  • Bignami A, LF Eng, D Dahl and CT Uyeda (1976) The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and sub mammalian vertebrates.Neuropathol. Appl. Neurobiol. 2, 99–100.

    Google Scholar 

  • Bitterman KJ, RM Anderson, HY Cohen, M Latorre-Esteves and DA Sinclair (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.J. Biol. Chem. 277, 45099–45107.

    PubMed  CAS  Google Scholar 

  • Bjorklund H, L Olson, D Dahl and R Schwarcz (1986) Short-and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes.Brain Res. 371, 267–277.

    PubMed  CAS  Google Scholar 

  • Blasko I, F Marx, E Steiner, T Hartmann and B Grubeck-Loebenstein (1999) TNFα plus IFNγ induce the production of Alzheimer β-amyloid peptides and decrease the secretion of APPs.FASEB J. 13, 63–68.

    PubMed  CAS  Google Scholar 

  • Blennow K, MJ de Leon and H Zetterberg (2006) Alzheimer’s disease.Lancet 368, 387–402.

    PubMed  CAS  Google Scholar 

  • Bosco MC, A Rapisarda, S Massazza, G Melillo, H Young and L Varesio (2000) The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1α and-β in macrophages [In Process Citation].J. Immunol. 164, 3283–3291.

    PubMed  CAS  Google Scholar 

  • Bovolenta P, RKH Liem and CA Mason (1984) Development of cerebellar astroglia: transitions in form and cytoskeleton content.Dev. Biol. 102, 248–259.

    PubMed  CAS  Google Scholar 

  • Burkle a (2001) Physiological and pathophysiology of poly(ADP-ribosyl)ation.Bioessays 23, 795–806.

    PubMed  CAS  Google Scholar 

  • Byun Y, R Chang, M Trivedi, KJ Green and VL Cryns (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis.Cell Death Differ. 8, 443–450.

    PubMed  CAS  Google Scholar 

  • Carlin JM, EC Borden, PM Sondel and GI Byrne (1989) Interferon-induced indoleamine 2,3-dioxygenase activity in human mononuclear phagocytes.J. Leukoc. Biol. 45, 29–34.

    PubMed  CAS  Google Scholar 

  • Cockhill J, K Jhamandas, RJ Boegman and RJ Beninger (1992) Action of picolinic acid and structurally related pyridine carboxylic acids on quinolinic acid-induced cortical cholinergic damage.Brain Res. 599, 57–63.

    PubMed  CAS  Google Scholar 

  • Cortrina ML and M Nedergaard (2002) Astrocytes in the aging brain.J. Neurosci. Res. 67, 1–10.

    Google Scholar 

  • Culican SM, NL Baumrind, M Yamamoto and AL Pearlman (1990) Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes.J. Neurosci. 10, 684–692.

    PubMed  CAS  Google Scholar 

  • Cullen KM (1997) Perivascular astrocytes within Alzheimer’s disease plaques.Neuroreport 8, 1961–1966.

    PubMed  CAS  Google Scholar 

  • da Cunha A, JJ Jefferson, WR Tyor, JD Glass, FS Jannetta and L Vitkovic (1993) Control of astrocytosis by interleukin-1 and transforming growth factor-β1 in human brain.Brain Res. 631, 39–45.

    PubMed  CAS  Google Scholar 

  • Dallner C, AG Woods, T Deller, M Kirsch and HD Hofinann (2002) CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain.Glia 37, 374–378.

    PubMed  Google Scholar 

  • Dong YS and EN Benveniste (2001) Immune function of astrocytes.Glia 36, 180–190.

    PubMed  CAS  Google Scholar 

  • Drejer J, OM Larsson and A Schousboe (1982) Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions.Exp. Brain Res. 47, 259–269.

    PubMed  CAS  Google Scholar 

  • Dyer MA and CL Cepko (2000) Control of Muller glial cell proliferation and activation following retinal injury.Nat. Neurosci. 3, 873–880.

    PubMed  CAS  Google Scholar 

  • Eastman CL (1989) Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line.Brain Res. 495, 225–231.

    PubMed  CAS  Google Scholar 

  • Eddleston M and L Mucke (1993) Molecular profile of reactive astrocytes — implications for their role in neurologic disease.Neuroscience 54, 15–36.

    PubMed  CAS  Google Scholar 

  • Edwards MA, M Yamamoto and VSJ Caviness (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker.Neuroscience 36, 121–144.

    PubMed  CAS  Google Scholar 

  • Erecinska M and IA Silver (1990) Metabolism and role of glutamate in mammalian brain.Prog. Neurobiol. 35, 245–296.

    PubMed  CAS  Google Scholar 

  • Fiala M, QN Liu, J Sayre, V Pop, V Brahmandam, MC Graves and HV Vinters (2002) Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier.Eur. J. Clin. Invest. 32, 360–371.

    PubMed  CAS  Google Scholar 

  • Fiala M, L Zhang, X Gan, B Sherry, D Taub, MC Graves, S Hama, D Way, M Weinand, M Witte, D Lorton, YM Kuo and AE Roher (1998) Amyloid-β induces chemokine secretion and monocyte migration across a human blood-brain barrier model.Mol. Med. 4, 480–489.

    PubMed  CAS  Google Scholar 

  • Fierz W, B Endler, K Reske, H Wekerle and A Fontana (1985) Astrocytes as antigen-presenting cells. I. Induction of la antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation.J. Immunol. 134, 3785–3793.

    PubMed  CAS  Google Scholar 

  • Frohman EM, S van den Noort and S Gupta (1989) Astrocytes and intracerebral immune responses.J. Clin. Immunol. 9, 1–9.

    PubMed  CAS  Google Scholar 

  • Galou M, E Colucci-Guyon, D Ensergueix, JL Ridet, M Gimenez y Ribotta, A Privat, C Babinet and P Dupouey (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice.J. Cell Biol. 133, 853–863.

    PubMed  CAS  Google Scholar 

  • Gee JR and JN Keller (2005) Astrocytes: regulation of brain homeostasis via apolipoprotein E.Int. J. Biochem. Cell Biol. 37, 1145–1150.

    PubMed  CAS  Google Scholar 

  • Groves AK, A Entwistle, PS Jat and M Noble (1993) The characterization of astrocyte cell lines that display properties of glial scar tissue.Dev. Biol. 159, 87–104.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, SJ Kerr, GA Smythe, PJ Armati and BJ Brew (1999) Kynurenine pathway metabolism in human astrocytes.Adv. Exp. Med. Biol. 467, 125–131.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, SJ Kerr, LA Pemberton, DG Smith, GA Smythe, PJ Armati and BJ Brew (2001a) IFN-β1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment.J. Interferon Cytokine Res. 21, 1097–1101.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, SJ Kerr, GA Smythe, DG Smith, V Kapoor, PJ Armati, J Croitoru and BJ Brew (2001b) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection.J. Neurochem. 78, 1–13.

    Google Scholar 

  • Guillemin GJ, J Croitoru-Lamoury, D Dormont, PJ Armati and BJ Brew (2003a) Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes.Glia 41, 371–381.

    PubMed  Google Scholar 

  • Guillemin GJ, DG Smith, GA Smythe, PJ Armati and BJ Brew (2003b) Expression of the kynurenine pathway enzymes in human microglia and macrophages.Adv. Exp. Med. Biol. 527, 105–112.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, GA Smythe, LA Veas, O Takikawa and BJ Brew (2003c) Aβ1–42 induces production of quinolinic acid by human macrophages and microglia.Neuroreport 14, 2311–2315.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, BJ Brew, CE Noonan, O Takikawa and KM Cullen (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus.Neuropathol. Appl. Neurobiol. 31, 395–404.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, SJ Kerr and BJ Brew (2005b) Involvement of quinolinic acid in AIDS dementia complex.Neurotox. Res. 7, 103–123.

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, V Meininger and BJ Brew (2005c) Implications for the kynurenine pathway and quinolinic acid in amytrophic lateral sclerosis.Neurodegenerative Dis 2, 1–11.

    Google Scholar 

  • Guillemin GJ, L Wang and BJ Brew (2005d) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex.J. Neuroinflammation 2, 16.

    PubMed  Google Scholar 

  • Guillemin GJ, KM Cullen, CK Lim, GA Smythe, V Kapoor, B Garner, O Takikawa and BJ Brew (2007) Characterization of the kynurenine pathway in human neuronProc. Natl. Acad. Sci. USA submitted.

  • Harpin ML, P Delaere, F Javoy-Agid, E Bock, C Jacque, B Delpech, H Villarroya, C Duyckaerts, JJ Hauw and N Baumann (1990) Glial fibrillary acidic protein and βA4 protein deposits in temporal love of aging brain and senile dementia of the Alzheimer type: relation with the cognitive state and with quantitative studies of senile plaques and neurofibrillary tangles.J. Neurosci. Res 27, 587–594.

    PubMed  CAS  Google Scholar 

  • Hartai Z, P Klivenyi, T Janaky, B Penke, L Dux and L Vecsei (2005) Kynurenine metabolism in multiple sclerosis.Acta Neurol. Scand. 112, 93–96.

    PubMed  CAS  Google Scholar 

  • Hartai Z, A Juhasz, A Rimanoczy, T Janaky, T Donko, L Dux, B Penke, GK Toth, Z Janka and J Kalman (2007) Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease.Neurochem. Int. 50, 308–313.

    PubMed  CAS  Google Scholar 

  • Hertz L, R Dringen, A Schousboe and SR Robinson (1999) Astrocytes: glutamate producers for neurons.J. Neurosci. Res. 57, 417–428.

    PubMed  CAS  Google Scholar 

  • Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies.Adv. Exp. Med. Biol. 398, 125–129.

    PubMed  CAS  Google Scholar 

  • Heyes MP, BJ Brew, K Saito, BJ Quearry, RW Price, K Lee, RB Bhalla, M Der and SP Markey (1992a) Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and β2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients.J. Neuroimmunol. 40, 71–80.

    PubMed  CAS  Google Scholar 

  • Heyes MP, K Saito, JS Crowley, LE Davis, MA Demitrack, M Der, LA Dilling, J Elia, MJ Kruesi, A Lackneret al. (1992b) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease.Brain 115 (Pt 5), 1249–1273.

    PubMed  Google Scholar 

  • Heyes MP, CL Achim, CA Wiley, EO Major, K Saito and SP Markey (1996) Human microglia convert L-tryptophan into the neurotoxin quinolinic acid.Biochem. J. 320, 595–597.

    PubMed  CAS  Google Scholar 

  • Hinterkeuser S, W Schroder, G Hager, G Seifert, I Blumcke, CE Elger, J Schramm and C Steinhauser (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances.Eur. J. Neurosci. 12, 2087–2096.

    PubMed  CAS  Google Scholar 

  • Ilzecka J, T Kocki, Z Stelmasiak and WA Turski (2003) Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis.Acta Neurol. Scand. 107, 412–418.

    PubMed  CAS  Google Scholar 

  • Jabs, R, IA Paterson and W Walz (1997) Qualitative analysis of membrane currents in glial cells from normal and gliotic tissuein situ.Neuroscience 81, 847–860.

    PubMed  CAS  Google Scholar 

  • Janeczko K (1992) A comparison of the proliferative activity of astrocytes and astrocyte-like cells expressing vimentin in the injured mouse cerebral hemisphere.Folia Histochem. Cytobiol. 30, 27–33.

    PubMed  CAS  Google Scholar 

  • Janzer RC and MC Raff (1987) Astrocytes induce blood-brain barrier properties in endothelial cells.Nature 325, 253–257.

    PubMed  CAS  Google Scholar 

  • Janzer RC and MC Raff (1997) Astrocytes induce blood-brain barrier properties in endothelial cells.Nature 325, 253–257.

    Google Scholar 

  • Jhamandas K, RJ Boegman, RJ Beninger and M Bialik (1990) Quinolinate-induced cortical cholinergic damage: modulation by tryptophan metabolites.Brain Res. 529, 185–191

    PubMed  CAS  Google Scholar 

  • Jhamandas KH, RJ Boegman, RJ Beninger, AF Miranda and KA Lipic (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists.Neurotox. Res. 2, 139–155.

    PubMed  CAS  Google Scholar 

  • Kalisch BE, K Jhamandas, RJ Boegman and RJ Beninger (1994) Picolinic acid protects against quinolinic acid-induced depletion of NADPH diaphorase containing neurons in the rat striatum.Brain Res. 668, 1–8.

    PubMed  CAS  Google Scholar 

  • Karwoski CJ, HK Lu and EA Newman (1989) Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells.Science 244, 505–620.

    Google Scholar 

  • Kashon ML, GW Ross, JP O’Callaghan, DB Miller, H Petrovitch, CM Burchfiel, DS Sharp, WR Markesbery, DG Davis, J Hardman, J Nelson and LR White (2004) Associations of cortical astrogliosis with cognitive performance and dementia status.J. Alzheimers Dis. 6, 595–604.

    PubMed  Google Scholar 

  • Kimelberg HK and MD Norenberg (1989) Astrocytes.Sci. Am. 260, 66–72, 74, 76.

    PubMed  CAS  Google Scholar 

  • Kobayashi K, M Hayashi, H Nakano, M Shimazaki, K Sugimori and Y Koshino (2004) Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer’s disease.J. Alzheimers Dis. 6, 623–632.

    PubMed  CAS  Google Scholar 

  • Kuchler-Bopp S, JP Delanoy, JC Artault, M Zaepfel and JR Dietrich (1999) Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells.Neuroreport 10, 1347–1353.

    PubMed  CAS  Google Scholar 

  • Lange H, H Thorner, A Hopf and KF Schroeder (1978) Morphometric studies of the neuropathological changes in choreatic disease.J. Neurol. Sci. 28, 401–425.

    Google Scholar 

  • Lapin IP, IB Prakhie and IP Kiseleva (1982) Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and mice.J. Neural Transm. 54, 229–238.

    PubMed  CAS  Google Scholar 

  • Laping NJ, B Teter, NR Nichols, I Rozovsky and CE Finch (1994) Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors.Brain Pathol. 1, 259–275.

    Google Scholar 

  • Laterra J and GW Goldstein (1991) Astrocytes-inducedin vitro angiogenesis: requirements for RNA and protein synthesis.J Neurochem. 57, 1231–1239.

    PubMed  CAS  Google Scholar 

  • Le Prince G, P Delaere, C Fages, C Duyckaerts, JJ Hauw and M Tardy (1993) Alterations of glial fibrillary acidic protein mRNA level in the aging brain and in senile dementia of the Alzheimer type.Neurosci. Lett. 151, 71–73.

    PubMed  Google Scholar 

  • Lesne S, C Ali, C Gabriel, N Croci, ET MacKenzie, CG Glabe, M Plotkine, C Marchand-Verrecchia, D Vivien and A Buisson (2005) NMDA receptor activation inhibits α-secretase and promotes neuronal amyloid-β production.J. Neurosci. 25, 9367–9377.

    PubMed  CAS  Google Scholar 

  • Lim CK, GA Smythe, R Stocker, BJ Brew and GJ Guillemin (2007) Characterization of the kynurenine pathway in human oligodendrocytes.Intl. Congr Series. In press

  • Luo J, AY Nikolaev, S Imai, D Chen, F Su, A Shiloh, L Guarente and W Gu (2001) Negative control of p53 by Siralpha promotes cell survival under stress.Cell 107, 137–148.

    PubMed  CAS  Google Scholar 

  • Magistretti PJ and L Pellerin (2000) [Functional brain imaging: role metabolic coupling between astrocytes and neurons.].Rev. Med. Suisse Romande 120, 739–742.

    PubMed  CAS  Google Scholar 

  • Malhotra SK and TK Shnitka (2002) Diversity of reactive astrocytes, In:Neuroglia in the Aging Brain (de Vellis JS, Ed.) (Human Press, Totowa, NJ) pp 17–33.

    Google Scholar 

  • Maragakis NJ and JD Rothstein (2006) Mechanisms of disease: astrocytes in neurodegenerative disease.Nature 2, 679–689.

    CAS  Google Scholar 

  • Marcaggi P and JA Coles (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signaling.prog. Neurobiol. 64, 157–183.

    PubMed  CAS  Google Scholar 

  • Marshak DR, SA Pesce, LC Stanley and WS Griffin (1992) Increased S100β neurotrophic activity in Alzheimer’s disease temporal lobe.Neurobiol. Aging 13, 1–7.

    PubMed  CAS  Google Scholar 

  • Matthew CK, KE Van Holde and KG Ahern (2003)Biochemistry (Addison-Wesley: Boston).

    Google Scholar 

  • McGeer EG and PL McGeer (2003) Inflammatory processes in Alzheimer’s disease.prog. Neuro-Psych. Biol. Psych. 27, 741–749.

    CAS  Google Scholar 

  • Melillo G, MC Bosco, T Musso and L Varesio (1996) Immunobiology of picolinic acid.Adv. Exp. Med. Biol. 398, 135–141.

    PubMed  CAS  Google Scholar 

  • Melillo G, GW Cox, D Radzioch and L Varesio (1993) Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophages.J. Immunol. 150, 4031–4040.

    PubMed  CAS  Google Scholar 

  • Mellor AL, B Baban, P Chandler, B Marshall, K Jhaver, A Hansen, PA Koni, M Iwashima and DH Munn (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion.J. Immunol. 171, 1652–1655.

    PubMed  CAS  Google Scholar 

  • Miller RH, S David, R Patel, ER Abney and MC Raff (1985) A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve:in vivo evidence for two distinct astrocyte lineages.Dev. Biol. 111, 35–41.

    PubMed  CAS  Google Scholar 

  • Misson JP, MA Edwards, M Yamamoto and VSJ Caviness (1988) Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker.Brain Res. Dev. Brain Res. 44, 95–108.

    PubMed  CAS  Google Scholar 

  • Moffett JR and MA Namboodiri (2003) Tryptophan and the immune response.Immunol. Cell Biol. 81, 247–265.

    PubMed  CAS  Google Scholar 

  • Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites [In Process Citation].Eur. J. Pharmacol. 375, 87–100.

    PubMed  CAS  Google Scholar 

  • Moroni F, A Cozzi, F Peruginelli, R Carpenedo and DE Pellegrini-Giampietro (1999) Neuroprotective effects of kynurenine-3-hydroxylase inhibitors in models of brain ischemia.Adv. Exp. Med. Biol. 467, 199–206.

    PubMed  CAS  Google Scholar 

  • Mouser PE, E Head, KH Ha and TT Rohn (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain.Am J Pathol. 168, 936–946.

    PubMed  CAS  Google Scholar 

  • Moynagh PN, DC Williams and LAJO Neil (1994) Activation of NF-κB and induction of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 expression in human glial cells by IL-1-modulation by antioxidants.J. Immunol. 153, 2681–2690.

    PubMed  CAS  Google Scholar 

  • Ohta K, A Fujinami, S Kuno, A Sakakimoto, H Matsui, Y Kawahara and M Ohta (2004) Cabergoline stimulates synthesis and secretion of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor by mouse astrocytes in primary culture.Pharmacology 71, 162–168.

    PubMed  CAS  Google Scholar 

  • Orte C, JG Lawrenson, TM Finn, AR Reid and GA Alit (1999). Comparison of blood-brain barrier and blood-nerve barrier endothelial cell markers.Anat. Embryol (Berl) 199, 509–517.

    CAS  Google Scholar 

  • Owe-Young R, M Mukhtar, R Pomerantz, GA Smythe, D Walker and BJ Brew (2007) Activation of the kynurenine pathway at the blood-brain barrier: a mechanism for persistence of HIV in the brain? In14th Conf Retroviruses and Opportunistic Infections, pp 356.

  • Petito CK, S Morgello, JC Felix and ML Lesser (1990) The two patterns of reactive astrocytes in postischemic rat brain.J Cereb. Blood Flow Metab. 10, 850–859.

    PubMed  CAS  Google Scholar 

  • Pike CJ, BJ Cummings and CW Cotman (1995) Early association of reactive astrocytes with senile plaques in Alzheimer’s disease.Exp. Neurol. 132, 172–179.

    PubMed  CAS  Google Scholar 

  • Pindon A, M Berry and D Antai (2000) Throm bomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G-protein-coupled protease-activated receptor-1.J. Neurosci. 20, 2543–2550.

    PubMed  CAS  Google Scholar 

  • Pixley SKR and J de Vellis (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin.Dev. Brain Res. 15, 201–209.

    Google Scholar 

  • Poitry-Yamate CL, S Poitry and M Tsacopoulos (1995) Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina.J. Neurosci. 15, 5179–5191.

    PubMed  CAS  Google Scholar 

  • Poitry S, CL Poitry-Yamate, J Ueberfeld, PR MacLeish and M Tsacopoulos (2000) Mechanisms of glutamate signaling in retinal glial (Muller) cells.J. Neurosci. 20, 1809–1821.

    PubMed  CAS  Google Scholar 

  • Porter RJ, BS Lunn and JT O’Brien (2003) Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly.Psychol. Med. 33, 41–49.

    PubMed  CAS  Google Scholar 

  • Privat A and P Rataboul (1986)Fibrous and Protoplasmic Astrocytes, vol.1 (Academic Press, San Diego, California)

    Google Scholar 

  • Qin Z, Y Wang and TN Chase (2000) A caspase-3-like protease is involved in NF-κB activation induced by stimulation ofN-methyl-D-aspartate receptors in rat striatum.Brain Res. Mol. Brain Res 80, 111–122.

    PubMed  CAS  Google Scholar 

  • Raff MC, RH Miller and M Noble (1983) A glial progenitor cell that developsin vitro into an astrocyte or an oligodendrocyte depending on the culture medium.Nature 303, 390–396.

    PubMed  CAS  Google Scholar 

  • Risau W and H Wolburg (1990) Development of blood-brain barrier.Trends. Neurosci. 13, 174–194.

    PubMed  CAS  Google Scholar 

  • Rongvaux A, F Andris, FV Gool and O Leo (2003) Reconstructing eukaryotic NAD metabolism.Bioessays 25, 683–690.

    PubMed  CAS  Google Scholar 

  • Rothermundt M, M Peters, J Prehn and V Arolt (2003) S100B in brain damage and neurodegeneration.Microsc. Res. Tech. 60, 614–632.

    PubMed  CAS  Google Scholar 

  • Rutter J, M Reick, LC Wu and SL McKnight (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors.Science 293, 510–514.

    PubMed  CAS  Google Scholar 

  • Sardar AM, JE Bell and GP Reynolds (1995) Increased concentrations of the neurotoxin 3-hydroxykynurenine in the frontal cortex of HIV-1-positive patients.J. Neurochem. 64, 932–935.

    PubMed  CAS  Google Scholar 

  • Schmechel DE and P Rakic (1979) A golgi study of radial glial cells in developing monkey telencephalon: morphongenesis and transformation into astrocytes.Anat. Embryol. (Berl.) 156, 115–152.

    CAS  Google Scholar 

  • Schwartz JP and K Mishler (1990) β-Adrenergic receptor regulation, through cyclic AMP, of nerve growth factor expression in rat cortical and cerebellar astrocytes.Cell Mol Neurobiol. 10, 447–457.

    PubMed  CAS  Google Scholar 

  • Schwarz M, S Teipel, K Burger and H Hampel (2006) Elevated 3-hydroxykynurenine serum levels in Alzheimer’s disease, In:Stress Behaviour Immune Response (Greisfivald: Germany).

    Google Scholar 

  • Seifert G and C Steinhauser (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability.Eur. J. Neurosci. 7, 1872–1881.

    PubMed  CAS  Google Scholar 

  • Smith JS and JD Boeke (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA.Genes Dev. 11, 241–254.

    PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids.Pharmacol. Rev. 45, 309–379.

    PubMed  CAS  Google Scholar 

  • Stone TW (2001) Endogenous neurotoxins from tryptophan.Toxicon 39, 61–73.

    PubMed  CAS  Google Scholar 

  • Stoy N, GM Mackay, CM Forrest, J Christofides, M Egerton, TW Stone and LG Darlington (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease.J. Neurochem. 93, 611–623.

    PubMed  CAS  Google Scholar 

  • Takamiya Y, S Kohsaka, S Toya, M Otani and Y Tsukada (1988) Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats.Brain Res. 466, 201–210.

    PubMed  CAS  Google Scholar 

  • Takikawa O (2005) Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated 1-tryptophan metabolism.Biochem. Biophys. Res. Commun. 338, 12–19.

    PubMed  CAS  Google Scholar 

  • Tavares RG, CI Tasca, CE Santos, M Wajner, DO Souza and CS Dutra-Filho (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain.Neuroreport 11, 249–253.

    PubMed  CAS  Google Scholar 

  • Tavares RG, CI Tasca, CE Santos, LB Alves, LO Porciuncula, T Emanuelli and DO Souza (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes.Neurochem. Int. 40, 621–627.

    PubMed  CAS  Google Scholar 

  • Testa U, F Louache, M Titeux, P Thompoulos and H Rochant (1985) The iron-chelating agent picolinic acid enhances transferrin receptors expression in human erythroleukaemic cell lines.Br. J. Haematol. 60, 491–502.

    PubMed  CAS  Google Scholar 

  • Urenjak J and TP Obrenovitch (2000) Neuroprotective potency of kynurenic acid against excitotoxicity.Neuroreport 11, 1341–1344.

    PubMed  CAS  Google Scholar 

  • Vaziri H, SK Dessain, EE Ng, SI Imai, RA Frye, TK Pandita. L Guarente and RA Weinberg (2001) hSIR2(SIRT1) functions as an NAD-dependent p52 deacetylase.Cell 107, 149–159.

    PubMed  CAS  Google Scholar 

  • Viviani B, S Bartesaghi, E Corsini, CL Galli and M Marinovich (2004) Cytokines role in neurogenerative events.Toxicol. Lett. 149, 85–89.

    PubMed  CAS  Google Scholar 

  • Vrooman L, K Jhamandas, RJ Boegman and RJ Beninger (1993) Picolinic acid modulates kainic acid-evoked glutamate release from the striatumin vitro.Brain Res. 627, 193–198.

    PubMed  CAS  Google Scholar 

  • Walz W (1989) Role of glial cells in the regulation of the brain ion microenvironment.Prog. Neurobiol. 33, 309–333.

    PubMed  CAS  Google Scholar 

  • Walz W (2000) Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter.Glia 31, 95–103.

    PubMed  CAS  Google Scholar 

  • Weiner HL and D Frenkel (2006) Immunology and immunotherapy of Alzheimer’s disease.Nature 6 404–416.

    CAS  Google Scholar 

  • Widner B, F Leblhuber, J Walli, GP Tilz, U Demel and D Fuchs (2000) Tryptophan degradation and immune activation in Alzheimer’s disease.J. Neural Transm. 107, 343–353.

    PubMed  CAS  Google Scholar 

  • Wilkinson A, J Day and R Bowater (2001) Bacterial DNA ligases.Mol. Microbiol. 40, 1241–1248.

    PubMed  CAS  Google Scholar 

  • Yankner BA, (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease.Neuron 16, 921–932.

    PubMed  CAS  Google Scholar 

  • Yasuda Y, N Tateishi, T Shimoda, S Satoh, E Ogitani and S Fujita (2004) Relationship between S100β and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia.Brain Res 1021, 20–31.

    PubMed  CAS  Google Scholar 

  • Yu AC, A Schousboe and L Hertz (1982) Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures.J. Neurochem. 39, 954–960.

    PubMed  CAS  Google Scholar 

  • Zhou M, GP Schools and HK Kimelberg (2000) GFAP mRNA positive glia isolated from rat hippocampus predominantly show complex current patterns.Brain Res. Mol. Brain Res. 76, 121–131.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Guillemin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, K.K., Brew, B. & Guillemin, G. The involvement of astrocytes and kynurenine pathway in Alzheimer’s disease. neurotox res 12, 247–262 (2007). https://doi.org/10.1007/BF03033908

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033908

Keywords

Navigation