Skip to main content
Log in

Protease treatment and chemical crosslinking of a Flavivirus: Tick borne encephalitis virus

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Tick-borne encephalitis virus was treated with pronase or thermolysin. The resulting particles were banded in sucrose gradients and analyzed for polypeptide composition. Both enzymes caused a reduction in particle density from 1.19 to 1.15–1.16 g/cm3. No loss of viral lipid or nucleic acid could be observed. SDS-polyacrylamidegel electrophoresis showed that only the core protein V2 was unchanged whereas the envelope proteins V3 and V1 had disappeared from their original positions in the PAGE profile. Instead a new peptide(s) with molecular weight of 4000–6000 was found in which hydrophobic amino-acids were enriched.

Crosslinking by dimethyl-3.3′-dithiobispropionimidate (DTBP) made the virus resistent to solubilization of the envelope proteins by TX-100. This could be interpreted by the formation of a dense envelope protein network around the nucleocapsid preventing its liberation by TX-100. Some data however indicate that direct crosslinking of at least one of the envelope proteins with the core cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Bonsdorff, D.-H., Pettersson, R.: Surface structure of Uukuniemi virus. J. Virol.16, 1296–1307 (1975).

    Google Scholar 

  2. de Madrid, A. T., Porterfield, J. S.: The Flaviviruses (group B arboviruses): a cross neutralization study. J. gen. Virol.23, 91–96 (1974).

    Google Scholar 

  3. Demsey, A., Steere, R. L., Brandt, E. W., Veltri, B. J.: Morphology and development of dengue-2 virus employing the freeze-fracture and thin-section techniques. J. ultrastruct. Res.46, 103–116 (1974).

    Google Scholar 

  4. Dubovi, E. J., Wagner, R. R.: Spatial relationship of the proteins of vesicular stomatitis virus: induction of reversible oligomers by cleavable protein crosslinkers and oxidation. J. Virol.22, 500–509 (1977).

    Google Scholar 

  5. Everitt, E., Lutter, L., Philipson, L.: Structural Proteins of Adenoviruses. XII. Location and neighbor relationship among proteins of adenovirion type 2 as revealed by enzymatic iodination, immunoprecipitation and chemical cross-linking. Virology67, 179–208 (1975).

    Google Scholar 

  6. Gahmberg, C. G., Utermann, G., Simons, K.: The membrane proteins of Semliki Forest virus have a hydrophobic part attached to the viral membrane. FEBS Letters28, 179–182 (1972).

    Google Scholar 

  7. Garoff, H., Simons, K.: Location of the spike glycoprotein in the virus membrane. Proc. Nat. Acad. Sci. U.S.A.71, 3988–3992 (1974).

    Google Scholar 

  8. Garoff, H.: Cross-linking of the spike glycoproteins in Semliki Forest virus with dimethylsuberimidate. Virology62, 385–392 (1974).

    Google Scholar 

  9. Heinz, F., Kunz, Ch.: Dissociation of Tick-borne encephalitis virus by Triton X-100 and Cetyl-trimethyl-ammoniumbromide. Acta virol. (in press).

  10. Kessler, S. W.: Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A. J. Immunol.115, 1617–1624 (1975).

    Google Scholar 

  11. Kitano, T., Suzuki, K., Yamaguchi, T.: Morphological, chemical and biological characterization of Japanese encephalitis virus virion and its hemagglutinin. J. Virol.14, 631–639 (1974).

    Google Scholar 

  12. Laemmli, U. K., Favre, M.: Maturation of the head of bacteriophage T4. I. DNA packaging events. J. mol. Biol.80, 575–599 (1973).

    Google Scholar 

  13. Maizel, J. K., Jr.: Gel electrophoresis of proteins. In:Maramorosch, K., Koppowsky, H. (eds.), Methods in Virology, Vol. V, 179–246. New York-London: Academic Press 1971.

    Google Scholar 

  14. Mudd, J. A.: Glycoprotein fragment associated with vesicular stomatitis virus after proteolytic digestion. Virology62, 573–577 (1974).

    Google Scholar 

  15. Mudd, J. A., Swanson, R. E.:In situ crosslinking of vesicular stomatitis virus proteins with reversible agents. Virology88, 263–280 (1978).

    Google Scholar 

  16. Nagai, Y., Yoshida, T., Hamaguchi, M., Iinuma, M., Maeno, K., Matsumoto, T.: Cross-linking of Newcastle disease virus proteins. Arch. Virol.58, 15–28 (1978).

    Google Scholar 

  17. Ohyama, A., Ito, T., Tanimura, E., Huang, S.-C., Hsue, J.-Y., Furu, Y.: Electron microscopic observation of the budding maturation of group B arboviruses. Microbiol. Immunol.21, 535–538 (1977).

    Google Scholar 

  18. Schlesinger, R. W.: Dengue Viruses. Virology Monographs, Vol. 16. Wien-New York: Springer 1977.

    Google Scholar 

  19. Schloemer, R. H., Wagner, R. R.: Association of vesicular stomatitis virus glycoprotein with virion membrane: characterization of the lipophilic tail fragment. J. Virol.16, 237–249 (1975).

    Google Scholar 

  20. Shapiro, D., Brandt, W. E., Cardiff, R. D., Russell, P. K.: The proteins of Japanese encephalitis virus. Virology44, 108–124 (1971).

    Google Scholar 

  21. Shapiro, D., Kos, Kathleen A., Russell, P. K.: Japanese encephalitis virus glycoproteins. Virology56, 88–94 (1973).

    Google Scholar 

  22. Stollar, V.: Studies on the nature of dengue viruses. IV. The structural proteins of type 2 dengue virus. Virology39, 426–438 (1969).

    Google Scholar 

  23. Trent, D. W.: Antigenic characterization of flavivirus structural proteins separated by isoelectric focusing. J. Virol.22, 608–618 (1977).

    Google Scholar 

  24. Trent, D. W., Harvey, Carol L., Qureshi, A., Le Stourgeon, Dana: Solid phase radioimmunoassay for antibodies to flavivirus structural and nonstructural proteins. Infect. Immun.13, 1325–1333 (1976).

    Google Scholar 

  25. Wang, K., Richards, F. M.: An approach to nearest neigbor analysis of membrane proteins. J. biol. Chem.249, 8005–8018 (1974).

    Google Scholar 

  26. Wengler, G., Wengler, G., Gross, H. J.: Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology89, 423–437 (1978).

    Google Scholar 

  27. Westaway, E. G.: Strategy of the Flavivirus genome: Evidence for multiple internal initiation and translation of proteins specified by Kunjin virus in mammalian cells. Virology80, 320–335 (1977).

    Google Scholar 

  28. Westaway, E. G., Shew, Marilyn: Proteins and glycoproteins specified by the Flavivirus Kunjin. Virology80, 309–319 (1977).

    Google Scholar 

  29. Wiley, D. C., Skehel, J. J., Waterfield, M.: Evidence from studies with a cross-linking reagent that the haemagglutinin of influenza virus is a trimer. Virology79, 446–448 (1977).

    Google Scholar 

  30. Ziemiecki, A., Garoff, H.: Subunit composition of the membrane glycoprotein complex of Semliki Forest virus. J. mol. Biol.122, 259–270 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinz, F.X., Kunz, C. Protease treatment and chemical crosslinking of a Flavivirus: Tick borne encephalitis virus. Archives of Virology 60, 207–216 (1979). https://doi.org/10.1007/BF01317492

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01317492

Keywords

Navigation