Skip to main content
Log in

Bone microarchitecture as an important determinant of bone strength

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Structure and microarchitecture are determinant aspects of bone strength and essential elements for the assessment of bone mechanical properties. The main structural determinants of bone mechanical strength include width and porosity in the cortical bone; shape, width, connectivity, and anisotropy in the trabecular bone. There are several methods to assess bone architecture, particularly at the trabecular level. Two different approaches can be identified. The first is based on the use of optical microscopy and on the principles of quantitative histology, which evaluate microarchitecture two-dimensionally. The second applies the most modern diagnostic techniques, employing computed tomography and magnetic resonance to obtain and analyze three-dimensional images. From a clinical point of view, microarchitecture is an interesting aspect to study and define specific patterns, such as glucocorticoid-induced osteoporosis, or to evaluate bone alterations in transplanted patients. Microarchitecture seems to be a determinant of bone fragility independent of bone density. Moreover, bone microarchitecture seems to be important to understand the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. Several in vivo studies (on animals and humans) showed important findings on the effects of different treatments on microarchitecture. Bisphosphonates and parathyroid hormone seemed to preserve or even improve microarchitecture. These observations can provide an additional interpretation for the anti-fracture effect of drugs from a structural viewpoint. The challenge for the future will be to evaluate bone quality in vivo with the same or better resolution and accuracy than the invasive methods in use today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson P.J. Variation in trabecular structure of vertebrae with age. Calcif. Tissue Res. 1967, 1: 24–32

    Article  CAS  PubMed  Google Scholar 

  2. Chesnut III C.H., Rosen C.J. Reconsidering the effects of antiresorptive therapies in reducing osteoporotic fracture. J. Bone Miner. Res. 2001, 16: 2163–72

    Article  CAS  PubMed  Google Scholar 

  3. Majumdar S., Genant H.K. A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis. Osteoporos. Int. 1995, 5: 79–92

    Article  CAS  PubMed  Google Scholar 

  4. Genant H.K., Engelke K., Fuerst T., et al. Noninvasive assessment of bone mineral and structure: state of the art. J. Bone Miner. Res. 1996, 11: 707–30

    Article  CAS  PubMed  Google Scholar 

  5. DeHoff R.T., Aigeltinger E.H., Craig K.R. Experimental determination of the topological properties of three-dimensional microstructures. J. Microsc. 1972, 95: 69

    Article  Google Scholar 

  6. Wakamatsu E., Sisson H.A. The cancellous bone of the iliac crest. Calcif. Tissue Res. 1969, 4: 147–61

    Article  CAS  PubMed  Google Scholar 

  7. Whitehouse W.J. The quantitative morphology of anisotropic trabecular bone. J. Microsc. 1974, 101: 153–68

    Article  CAS  PubMed  Google Scholar 

  8. Aaron J.E., Makins N.B., Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin. Orthop. Related Res. 1987, 215: 260–71

    Google Scholar 

  9. Parfitt A.M., Drezner M.K., Glorieux F.H., et al. Bone Histomorphometry: standardization of nomenclature, symbols, and units. J. Bone. Miner. Res. 1987, 2: 595–610

    Article  CAS  PubMed  Google Scholar 

  10. Clermonts E.C.G.M., Birkennhäger-Frenkel D.H. Software for bone histomorphometry by means of a digitizer. Comput. Math. Prog. Biomed. 1985, 21: 185–94

    Article  CAS  Google Scholar 

  11. Garrahan N.J., Mellish R.W.E., Vedi S., Compston J.E. Measurement of mean trabecular plate thickness by a new computerized method. Bone 1987, 8: 227–30

    Article  CAS  PubMed  Google Scholar 

  12. Garrahan N.J., Mellish R.W.E., Compston J.E. A new method for two-dimensional analysis of bone structure in human iliac crest biopsies. J. Microscopy 1986, 142: 341–9

    Article  CAS  Google Scholar 

  13. Parfitt A.M. Remodeling and microstructure of bone: relation to prevent of age related fracture. In: Vagenakis A., Soucacos P., Avramides A., Segre G., Deftos L. (Eds.). Second international conference on osteoporosis: social and clinical aspects. Masson Italia Editori SIA, Milano, 1986, p. 197–209

    Google Scholar 

  14. Vesterby A., Gundersen H.J.G., Melsen F. Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 1989, 10: 7–13

    Article  CAS  PubMed  Google Scholar 

  15. Vogel M., Hahn M., Caselitz P., Woggan J., Pompesius-Kempa M., Delling G. Comparison of trabecular bone structure in man today and an ancient population in Western Germany. In: Takahashi H.E. (Ed.). Bone Morphometry. Nishimura Co., Ltd., Niigata, Japan, 1990, p. 220–3

    Google Scholar 

  16. Le H.M., Holmes R.E., Shors E.C., Rosenstein D.A. Computerized quantitative analysis of the interconnectivity of porous biomaterials. Acta Stereol. 1992, 11 (Suppl 1): 267–72

    Google Scholar 

  17. Feldkamp L.A., Goldstein S.A., Parfitt A.M., Jesion G., Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 1989, 4: 3–11

    Article  CAS  PubMed  Google Scholar 

  18. Weinstein R.S., Majumdar S. Fractal geometry and vertebral compression fractures. J. Bone Miner. Res. 1994, 9: 1797–802

    Article  CAS  PubMed  Google Scholar 

  19. McBroom R.J., Hayes W.C., Edwards W.T., Goldberg R.P., White A.A. III Prediction of vertebral body compressive fracture using quantitative computed tomography. J. Bone Joint. Surg. 1985, 67: 1206–14

    CAS  PubMed  Google Scholar 

  20. Laib A., Newitt D.C., Lu Y., Majumdar S. New model-independent measures of trabecular bone structure applied to in vivo high resolution MR images. Osteoporos. Int. 2002, 13: 130–6

    Article  CAS  PubMed  Google Scholar 

  21. Issever A.S., Vieth V., Lotter A., et al. Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad. Radiol. 2002,: 1395–406

  22. McLaughlin F., Mackintosh J., Hayes B.P., et al. Glucocorticoidinduced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone 2002, 30: 924–30

    Article  CAS  PubMed  Google Scholar 

  23. Grotz W.H., Mundinger F.A., Müller C.B., et al. Trabecular bone architecture in female renal allograft recipients — assessed by computed tomography. Nephrol. Dial. Transplant. 1997, 12: 564–9

    Article  CAS  PubMed  Google Scholar 

  24. Link T.M., Saborowski O., Kisters K., et al. Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos. Int. 2002, 13: 119–29

    Article  CAS  PubMed  Google Scholar 

  25. Chappard D., Legrand E., Basle M.F., et al. Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J. Bone Miner. Res. 1996, 11: 676–85

    Article  CAS  PubMed  Google Scholar 

  26. Aaron J.E., Francis R.M., Peacock M., Makins N.B. Contrasting microanatomy of idiopatic and corticosteroidinduced osteoporosis. Clin. Orthop. 1989, 243: 294–305

    PubMed  Google Scholar 

  27. Dalle Carbonare L., Arlot M.E., Chavassieux P.M., Roux J.P., Portero N.R., Meunier P.J. Comparison of trabecular bone microarchitecture and remodeling in glucocorticoidinduced and post-menopausal osteoporosis J. Bone Miner. Res. 2001, 16: 97–103

    Article  Google Scholar 

  28. Newitt D.C., Majumdar S., van Rierbergen B., et al. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos. Int. 2002, 13: 6–17

    Article  CAS  PubMed  Google Scholar 

  29. Audran M., Chappard D., Legrand E., Libouban H., Baslé M.F. Bone microarchitecture and bone fragility in men: DXA and histomorphometry in humans and in orchidectomized rat model. Calcif. Tissue Int. 2001, 69: 214–7

    Article  CAS  PubMed  Google Scholar 

  30. Legrand E., Chappard D., Pascaretti C., et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J. Bone Miner. Res. 2000, 15: 13–9

    Article  CAS  PubMed  Google Scholar 

  31. Chavassieux P.M., Arlot M.E., Reda C., Wei L., Yates A.J., Meunier P.J. Histomorphometric assessment of the longterm effects of alendronate on bone quality and remodeling in patients with osteoporosis. J. Clin. Invest. 1997, 100: 1475–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Borah B., Dufresne T.E., Chmielewski P.A., Gross G.J., Prenger M.C., Phipps R.J. Risedronate preserves trabecular architecture and increases bone strength in ovariectomized minipigs, as measured by 3-Dimensional microcomputed tomography. J. Bone Miner. Res. 2002, 17: 1139–47

    Article  CAS  PubMed  Google Scholar 

  33. Borah B., Dufresne T., Chmielewski P., Prenger M., Eriksen E.F. Risedronate (Ris) preserves trabecular bone architecture in osteoporotic postmenopausal women as measured by 3-D micro-computed tomography: effects of bone turnover. J. Bone Miner. Res. 2001, 16 (Suppl. 1): S218

    Google Scholar 

  34. Ding M., Day J.S., Burr D.B., et al. Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif. Tissue Int. 2003 online publication

    Google Scholar 

  35. Komatsubara S., Mori S., Mashioba T., et al. Long-term treatment of icandronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J. Bone Miner. Res. 2003, 18: 512–20

    Article  CAS  PubMed  Google Scholar 

  36. Dempster D.W., Cosman F., Kurland E.S., et al. Effect of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res. 2001, 16: 1846–53

    Article  CAS  PubMed  Google Scholar 

  37. Zanchetta J.R., Bogado C.E., Ferretti J.L., et al. Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J. Bone Miner. Res. 2003, 18: 539–43

    Article  CAS  PubMed  Google Scholar 

  38. Sato M., Vahle J., Schmidt A., et al. Abnormal bone microarchitecture and biomechanical properties with nearlifetime treatment of rats with PTH. Endocrinology 143: 3230–42

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Dalle Carbonare MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbonare, L.D., Giannini, S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest 27, 99–105 (2004). https://doi.org/10.1007/BF03350919

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350919

Key-words

Navigation