Skip to main content
Log in

Metabolism of citrulline in man

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Citrulline is a non protein amino acid involved in three important metabolic pathways, the intrahepatic transformation of ammonia to urea, the de novo synthesis of arginine from glutamine in gut and kidney, the nitric oxide synthesis. The two first pathways use the same enzyme activities but are regulated in different way. This review describe these pathways and their regulation in different tissues. In the light of our knowledge we tried to explain the physiological and pathological (inherited or acquired) variations in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoyagi K, Mori M, Tatibana M (1979) Inhibition of urea synthesis by pent-4-enoate associated with decrease in N-acetylglutamate concentration in isolated rat hepatocytes. Biochim Biophys Acta 587: 515–521

    Google Scholar 

  • Bouby N, Hassler C, Parvy P, Bankir L (1993) Renal synthesis of arginine in chronic renal failure: in vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney Int 49: 676–683

    Google Scholar 

  • Bradford NM, Mc Givan JD (1980) Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett 113: 294–298

    Google Scholar 

  • Bremer HJ, Duran M, Kamerling JP, Przyrembel H, Wadman SK (1981) Disturbances of amino acid metabolism: clinical chemistry and diagnosis. Urban and Schwarzenberg, Baltimore Munich, pp 203–227

    Google Scholar 

  • Briand P, François B, Rabier D, Cathelineau L (1982) Ornithine transcarbamylase deficiencies in human males. Kinetic and immunochemical classification. Biochim Biophys Acta 704: 100–106

    Google Scholar 

  • Brosnan JT (1976) Factor affecting intracellular ammonia concentration in liver. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle J. Wiley and Sons, New York, pp 443–457

    Google Scholar 

  • Ceballos I, Chauveau P, Guerin V, Bardet J, Parvy P, Kamoun P, Jungers P (1990) Early alterations of plasma amino acids in chronic renal failure. Clin Chim Acta 188: 101–108

    Google Scholar 

  • Ceriotti G, Spandrio L (1965) Catalytic acceleration of the urea-diacetylmonoxime-phenazone reaction and its application to automatic analysis. Clin Chim Acta 11: 519–522

    Google Scholar 

  • Chappel JB, Mc Givan JD, Crompton M (1972) In: Woessner JF, Huising JF, Huising F (eds) The molecular basis of biological transport. Academic Press, New York, pp 55–81

    Google Scholar 

  • Charpentier C, Tetau JM, Ogier H, Saudubray JM, Coudé FX, Lemmonier A (1982) Amino acid profile in pyruvate carboxylase deficiency: comparison with some other metabolic disorders. J Inherit Metab Dis 5[Suppl]1: 11–12

    Google Scholar 

  • Clarke S (1976) A major polypeptide component of rat liver mitochondria: carbamyl-phosphate synthetase. J Biol Chem 251: 950–961

    Google Scholar 

  • Clemens PC, Plettner Ch (1989) A non-enzymatic method for identification of citrullinemia heterozygotes. Clin Genet 35: 468–469

    Google Scholar 

  • Cohen NS, Cheung CW, Raijman L (1980) The effects of ornithine on mitochondrial carbamylphosphate synthesis. J Biol Chem 255: 10248–10255

    Google Scholar 

  • Dechelotte P, Darmaun D, Rongier M, Hecketsweiler B, Rigal O, Desjeux JF (1991) Absorption and metabolic effects of enterally administered glutamine in humans. Am J Physiol 260: G677-G682

    Google Scholar 

  • Desjeux JF, Rajantie J, Simell O, Dumontier AM, Perheentupa J (1980) Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance. J Clin Invest 65: 1382–1387

    Google Scholar 

  • Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME (1990) Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol 259: E437-E442

    Google Scholar 

  • Elliot KRF, Tipton KF (1974a) Kinetic studies of bovine liver carbamoylphosphate synthase. Biochem J 141: 807–816

    Google Scholar 

  • Elliot KRF, Tipton KF (1974b) Product inhibition studies on bovine liver carbamoyl-phosphate synthetase. Biochem J 141: 817–824

    Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Ann Rev Biochem 44: 933–955

    Google Scholar 

  • Freedland RA, Crozier GL, Hicks BL, Meijer AJ (1984) Arginine uptake by isolated rat liver mitochondria. Biochim Biophys Acta 802: 407–412

    Google Scholar 

  • Gamble JG, Lehninger AL (1973) Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem 248: 610–618

    Google Scholar 

  • Grisolia S, Cohen PP (1953) Catalytic role of glutamate derivatives in citrulline synthesis. J Biol Chem 204: 753–757

    Google Scholar 

  • Guha SK, Mukherjee KL (1974) Urea biosynthesis in normal human fetuses. Biochim Biophys Acta 372: 285–290

    Google Scholar 

  • Hall LM, Metzenberg RL, Cohen PP (1958) Isolation and characterization of a naturally occuring cofactor of carbamylphosphate synthesis. J Biol Chem 230: 1013–1021

    Google Scholar 

  • Hall LM, Johnson RC, Cohen PP (1960) The presence of carbamoylphosphate synthetase in intestinal mucosa. Biochim Biophys Acta 37: 144–145

    Google Scholar 

  • Hensgens HESJ, Verhoeven AJ, Meijer AJ (1980) The relationship between intramitochondrial N-acetylglutamate and activity of carbamoylphosphate synthetase (ammonia). The effect of glucagon. Eur J Biochem 107: 197–205

    Google Scholar 

  • Hernanz A, Polanco I (1991) Plasma precursor aminoacids of central nervous system monoamines in children with coeliac disease. Gut 32: 1478–1481

    Google Scholar 

  • Herzfeld A, Raper SM (1976) Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta 428: 600–610

    Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrate. Science 235: 473–476

    Google Scholar 

  • Hurwitz R, Kretchner N (1986) Development of arginine synthesizing enzymes in mouse intestine. Am J Physiol 251: G103-G110

    Google Scholar 

  • Iyengar R, Stuehr DJ, Marletta MA (1987) Macrophage synthesis of nitrite, nitrate and N-nitrosamines: Precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84: 6369–6373

    Google Scholar 

  • Jones ME (1985) Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J Nutr 115: 509–515

    Google Scholar 

  • Jones ME, Anderson AD, Anderson C, Hodes S (1961) Citrulline synthesis in rat tissues. Arch Biochem Biophys 95: 499–507

    Google Scholar 

  • Kamoun P, Parvy P, Cathelineau L (1983) A rapid and simple method for citrulline determination in plasma. Clin Chem 29: 398–400

    Google Scholar 

  • Kamoun P, Parvy Ph, Rabier D (1991) Indications et interprétation de la chromatographie des acides aminés pour le diagnostic des maladies métaboliques. In: Saudubray JM (ed) Maladies métaboliques. Doin, Paris, pp 1–13

    Google Scholar 

  • Kang ES, Scanlon J (1974) Concentrations of the free amino acids in human amniotic fluid during normal and abnormal pregnancies. Am J Obstet Gynecol 119: 603–609

    Google Scholar 

  • Kennaway NG, Harwood PJ, Ramberg DA, Koler RD, Buist NRM (1975) Citrullinemia: enzymatic evidence for genetic heterogeneity. Pediatr Res 9: 554–558

    Google Scholar 

  • Knecht E, Hernandez J, Wallace R, Grisolia S (1979) Immunoferritin location of carbamoylphosphate synthetase. J Histochem Cytochem 27: 975–981

    Google Scholar 

  • Krebs HA, Hems R, Lund P (1973) Some regulatory mechanism in the synthesis of urea in the mammalian liver. Adv Enzyme Regul 11: 361–377

    Google Scholar 

  • Largillière C, Houssin D, Gottrand F, Mathey C, Checoury A, Alagille D, Farriaux JP (1989) Liver transplantation for ornithine transcarbamylase deficiency in a girl. J Pediatr 115: 415–417

    Google Scholar 

  • Levillain D, Hus-Citharel A, Morel F, Bankir L (1990) Localization of arginine synthesis along rat nephron. Am J Physiol 259: F916-F923

    Google Scholar 

  • Lund P, Wiggins D (1986) The ornithine requirement of urea synthesis. Formation of ornithine from glutamine in hepatocytes. Biochem J 239: 773–776

    Google Scholar 

  • Marescau B, Pintens J, Lowenthal A, Terheggen HG, Adriaenssens K (1979) Arginase and free amino acids in hyperargininemia. Leukocyte arginine as a diagnostic parameter for heterozygotes. J Clin Chem Clin Biochem 17: 211–217

    Google Scholar 

  • Marliss EB, Aoki TT, Pozefsky T, Most AS, Cahill GF (1971) Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J Clin Invest 50: 814–817

    Google Scholar 

  • Martin-Requero A, Corkey BE, Cerdan S, Walajtys-Rode E, Parilla RL, Williamson JR (1983) Interactions betweenα-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes. J Biol Chem 258: 3673–3681

    Google Scholar 

  • Mc Dermot WV (1957) Metabolism and toxicity of ammonia. N Engl J Med 257: 1076–1081

    Google Scholar 

  • Mc Givan JD, Bradford NM, Mendes-Mourao J (1976) The regulation of carbamoylphosphate synthase activity in rat liver mitochondria. Biochem J 154: 415–421

    Google Scholar 

  • Meijer AJ (1979) Regulation of carbamoylphosphate synthetase (ammonia) in liver in relation to urea cycle activity. Trend Biochem Sci 4: 83–86

    Google Scholar 

  • Meijer AJ, Hensgens HESJ (1982) Ureogenesis. In: Sies H (ed) Metabolic compartmentation. Academic Press, New York, pp 817–824

    Google Scholar 

  • Meijer AJ, Van Waoerkom GM, Wanders RKJA, Lof C (1982) Transport of N-acetylglutamate in rat liver mitochondria. Eur J Biochem 124: 325–330

    Google Scholar 

  • Moncada S (1992) The L-arginine: nitric oxide pathway. Acta Physiol Scand 145: 201–227

    Google Scholar 

  • O'Neil R, Morrow G, Hammel D, Auerbach VH, Barness LA (1971) Diagnostic significance of amniotic fluid amino acids. Obstet Gynecol 37: 550–554

    Google Scholar 

  • Ogawa T, Kimoto M, Sasaoka K (1989) Purification and properties of a new enzyme,NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem 264: 10205–10209

    Google Scholar 

  • Pinkus LM, Windmueller HG (1977) Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys 182: 506–517

    Google Scholar 

  • Rabier D, Briand P, Petit F, Kamoun P, Cathelineau L (1986) Effects of organic acids on the synthesis of citrulline by intact rat liver mitochondria. Biochimie 68: 639–647

    Google Scholar 

  • Rabier D, Briand P, Petit F, Parvy P, Kamoun P, Cathelineau L (1982) Acute effects of glucagon on citrulline biosynthesis. Biochem J 206: 627–631

    Google Scholar 

  • Rabier D, Narcy C, Bardet J, Parvy Ph, Saudubray JM, Kamoun P (1991) Arginine remains an essential amino acid after liver transplantation in urea cycle enzyme deficiencies. J Inherit Metab Dis 14: 277–280

    Google Scholar 

  • Räihä NCR, Suihkonen J (1968) Development of urea-synthesizing enzymes in human liver. Acta Paediatr Scand 57: 121–127

    Google Scholar 

  • Raijman L (1974) Citrulline synthesis in rat tissues and liver content of carbamoylphosphate and ornithine. Biochem J 138: 225–232

    Google Scholar 

  • Raijman L, Jones ME (1976) Purification, composition and some properties of rat liver carbamylphosphate synthetase (ammonia). Arch Biochem Biophys 175: 270–278

    Google Scholar 

  • Ratner S (1983) A radiochemical assay for argininosuccinate synthetase with [U-14C] aspartate. Anal Biochem 135: 479–488

    Google Scholar 

  • Ratner S, Murakami-Murofuski K (1980) A new radiochemical assay of arginosuccinase with purified [14C] argininosuccinate. Anal Biochem 106: 134–147

    Google Scholar 

  • Reid DW, Campbell DJ, Yakymyshyn LY (1971) Quantitative amino acids in amniotic fluid and maternal plasma in early and late pregnancy. Am J Obstet Gynecol 111: 251–258

    Google Scholar 

  • Ribes A, Riudor E, Valcarel R, Salva A, Castello F, Murillo S, Dominguez C, Rotig A, Jakobs C (1993) Pearson syndrome: altered tricarboxylic acid and urea-cycle metabolites, adrenal insufficiency and corneal opacities. J Inherit Metab Dis 16: 537–540

    Google Scholar 

  • Robinson BH (1989) Lactic acidemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. Mac Graw Hill, New York, pp 869–888

    Google Scholar 

  • Saheki T, Katsunuma T, Sase M (1977) Regulation of urea synthesis in rat liver. Changes of ornithine and acetylglutamate concentrations in the livers of the rats subjected to dietary transitions. J Biochem 82: 551–558

    Google Scholar 

  • Saheki T, Ohkubo T, Katsunuma T (1978) Regulation of urea synthesis in rat liver. Increase in the concentrations of ornithine and acetylglutamate in rat liver in response to urea synthesis stimulated by the injection of an ammonium salt. J Biochem 84: 1423–1430

    Google Scholar 

  • Saheki T, Nakano K, Kobayashi K, Imamura Y, Itakura Y, Sase M, Hagihara S, Matuo S (1985) Analysis of the enzyme abnormality in eight cases of neonatal and infantile citrullinaemia in Japan. J Inherit Metab Dis 8: 155–156

    Google Scholar 

  • Saheki T, Kobayashi K, Inoue I, Matuo S, Haihara S, Noda T (1987) Increased urinary excretion of argininosuccinate in type II citrullinemia. Clin Chim Acta 170: 297–304

    Google Scholar 

  • Sainsbury GM (1980) The distribution of ammonia between hepatocytes and extracellular fluid. Biochim Biophys Acta 631: 305–316

    Google Scholar 

  • Scrutton MC (1974) Pyruvate carboxylase. Studies of activator-independent catalysis and of the specificity of activation by acyl derivatives of coenzyme A for the enzyme from rat liver. J Biol Chem 249: 7057–7067

    Google Scholar 

  • Shigesada K, Aoyagi K, Tatibana M (1978) Role of acetylglutamate in ureotelism. Variation of acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver. Eur J Biochem 85: 385–391

    Google Scholar 

  • Shigesada K, Tatibana M (1971a) Enzymatic synthesis of acetylglutamate by mammalian liver preparations and its stimulation by arginine. Biochem Biophys Res Commun 44: 1117–1124

    Google Scholar 

  • Shigesada K, Tatibana M (1971b) Role of actylglutamate in ureotelism. I. Occurence and biosynthesis of actylglutamate in mouse and rat tissues. J Biol Chem 246: 5588–5595

    Google Scholar 

  • Shigesada M, Tatibana M (1978) N-acetylglutamate synthetase from rat liver mitochondria. Partial purification and catalytic properties. Eur J Biochem 84: 285–291

    Google Scholar 

  • Simell O (1989) Lysinuric protein intolerance and other cationic aminoacidurias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. Mac Graw Hill, New York, pp 2497–2513

    Google Scholar 

  • Sonoda T, Tatibana M (1983) Purification of N-acetylglutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258: 9839–9844

    Google Scholar 

  • Stewart PM, Walser M (1980) Short term regulation of ureogenesis. J Biol Chem 255: 5270–5280

    Google Scholar 

  • Tatibana M, Shigesada K (1976) Regulation of urea biosynthesis by the acetylglutamate-arginine system. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle. J Wiley and Sons, New York, pp 301–313

    Google Scholar 

  • Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C (1980) Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65: 1162–1173

    Google Scholar 

  • Tuchman M (1989) Persistant acitrullinemia after liver transplantation for carbamylphosphate synthetase deficiency. N Engl J Med 320: 1488–1499

    Google Scholar 

  • Wakabayashi Y, Yamada E, Hasegawa T, Yamada RN (1991) Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. Arch Biochem Biophys 291: 1–8

    Google Scholar 

  • Walser M (1983) Urea cycle disorders and other hereditary hyperammonemic syndromes. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. Mac Graw Hill, New York, pp 402–438

    Google Scholar 

  • Wanders RJA, Hoek JB, Tager JM (1980) Origin of the ammonia found in protein-free extracts of rat liver mitochondria and rat hepatocytes. Eur J Biochem 110: 197–202

    Google Scholar 

  • Warren JT (1959) Portal and peripheral blood ammonia concentration in germ-free and conventional guinea pigs. Am J Physiol 197: 717–720

    Google Scholar 

  • Windmueller HG (1982) Glutamine utilization by the small intestine. Adv Enzymol 53: 201–237

    Google Scholar 

  • Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249: 5070–5079

    Google Scholar 

  • Windmueller HG, Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys 171: 662–672

    Google Scholar 

  • Windmueller HG, Spaeth AE (1978) Identification of ketone bodies and glutamine as the respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem 253: 69–76

    Google Scholar 

  • Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate and aspartate. J Biol Chem 255: 107–112

    Google Scholar 

  • Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241: E473-E480

    Google Scholar 

  • Zollner H (1981) Regulation of urea synthesis. The effect of ammonia on the N-acetylglutamate content of isolated rat liver. Biochim Biophys Acta 676: 170–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabier, D., Kamoun, P. Metabolism of citrulline in man. Amino Acids 9, 299–316 (1995). https://doi.org/10.1007/BF00807268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807268

Keywords

Navigation