Skip to main content

Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis

  • Chapter
  • First Online:
Multiple Sclerosis: Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 958))

Abstract

Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

blood-brain barrier

CIS:

clinically isolated syndrome

CNS:

central nervous system

CSF:

cerebrospinal fluid

DIR:

double inversion recovery

DMF:

Dimethyl Fumarate

DTI:

diffusion tensor imaging

EAE:

experimental autoimmune encephalomyelitis

GA:

glatiramer acetate

Gd:

gadolinium

GM:

gray matter

HERV:

human endogenous retroviruses

MAG:

myelin associated glycoprotein

MBP:

myelin basic protein

MMPs:

matrix metalloproteinases

LQ:

laquinimod

MOG:

myelin oligodendrocyte glycoprotein

3D-MPRAGE:

3-dimensional magnetization prepared acquisition with gradient-echo

MRI:

magnetic resonance imaging

MS:

multiple sclerosis

MSRV:

multiple sclerosis associated retrovirus

MTR:

magnetization transfer ratio

NAWM:

normal appearing white matter

OL:

oligodendrocyte

omGP:

oligodendrocyte myelin glycoprotein

OPC:

oligodendrocyte progenitor cell

OSP:

oligodendrocyte surface protein

PLP:

proteolipid protein

PPMS:

primary progressive multiple sclerosis

PSIR:

phase sensitive inversion recovery

rHIgM22:

human monoclonal IgM antibody 22

RRMS:

relapsing remitting multiple sclerosis

SPMS:

secondary progressive multiple sclerosis

TNF-α:

tumor necrosis factor-alpha

USPIO:

ultra-small superparamagnetic particles of iron oxide

WM:

white matter

References

  • Aboul-Enein F, Rauschka H, Kornek B et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Yurlova L, Simons M (2011) Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol 21:585–593

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R (2015) Remyelination in multiple sclerosis: realizing a long-standing challenge. Expert Rev Neurother 15:1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R, Herschkovitz A, Eilam R et al (2008) Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albanese M, Zagaglia S, Landi D et al (2016) Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J Neuroinflammation 13:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  CAS  PubMed  Google Scholar 

  • Almeida RG, Lyons DA (2014) On the resemblance of synapse formation and CNS myelination. Neuroscience 276:98–108

    Article  CAS  PubMed  Google Scholar 

  • Aparicio E, Mathieu P, Pereira Luppi M, Almeira Gubiani MF, Adamo AM (2013) The Notch signaling pathway: its role in focal CNS demyelination and apotransferrin-induced remyelination. J Neurochem 127:819–836

    Article  CAS  PubMed  Google Scholar 

  • Arellano RO, Sanchez-Gomez MV, Alberdi E et al (2016) Axon-to-glia interaction regulates GABAA receptor expression in oligodendrocytes. Mol Pharmacol 89:63–74

    Article  CAS  PubMed  Google Scholar 

  • Armendáriz BG, Bribian A, Perez-Martinez E et al (2012) Expression of Semaphorin 4F in neurons and brain oligodendrocytes and the regulation of oligodendrocyte precursor migration in the optic nerve. Mol Cell Neurosci 49:54–67

    Article  PubMed  CAS  Google Scholar 

  • Arnold R, Huynh W, Kiernan MC, Krishnan AV (2015) Ion channel modulation as a therapeutic approach in multiple sclerosis. Curr Med Chem 22:4366–4378

    Article  CAS  PubMed  Google Scholar 

  • Asaf A, Evan S, Anat A (2015) Injury to white matter tracts in relapsing-remitting multiple sclerosis: a possible therapeutic window within the first 5 years from onset using diffusion-tensor imaging tract-based spatial statistics. Neuroimage Clin 8:261–6. doi:10.1016/j.nicl.2015.04.020, eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Ascherio A, Munger KL, White R et al (2014) Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 71:306–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC (2002) Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 61:197–211

    Article  PubMed  Google Scholar 

  • Bagnato F, Hametner S, Yao B et al (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134:3602–3615

    Article  PubMed  Google Scholar 

  • Bakshi R, Ariyaratana S, Benedict RH, Jacobs L (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58:742–748

    Article  CAS  PubMed  Google Scholar 

  • Ballanger F, Nguyen JM, Khammari A, Dreno B (2010) Evolution of clinical and molecular responses to bexarotene treatment in cutaneous T-cell lymphoma. Dermatology 220:370–375

    Article  CAS  PubMed  Google Scholar 

  • Barkhof F, Bruck W, Groot CJ et al (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073–1081

    Article  PubMed  Google Scholar 

  • Barkhof F, Calabresi PA, Miller DH, Reingold SC (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5:256–266

    Article  PubMed  Google Scholar 

  • Baron W, Hoekstra D (2010) On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 584:1760–1770

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Lu PH, Heydari P et al (2012) Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biol Psychiatry 72:1026–1034

    Article  PubMed  Google Scholar 

  • Beecham AH, Patsopoulos NA, Xifara DK et al (2013) International Multiple Sclerosis Genetics Consortium (IMSGC); Wellcome Trust Case Control Consortium 2 (WTCCC2); International IBD Genetics Consortium (IIBDGC). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45(11):1353–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict RH, Bruce JM, Dwyer MG et al (2006) Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch Neurol 63:1301–1306

    Article  PubMed  Google Scholar 

  • Benedict RH, Bruce J, MG D, Weinstock-Guttman B, Tjoa C, Tavazzi E, FE M, Zivadinov R (2007) Diffusion-weighted imaging predicts cognitive impairment in multiple sclerosis. Mult Scler 13:722–730

    Article  PubMed  Google Scholar 

  • Benjamins JA (2013) Direct effects of secretory products of immune cells on neurons and glia. J Neurol Sci 333:30–36

    Article  CAS  PubMed  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    Article  CAS  PubMed  Google Scholar 

  • Bergsland N, Zivadinov R, Dwyer MG, Weinstock-Guttman B, Benedict RH (2015) Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult Scler 22(10):1327–1336

    Article  PubMed  Google Scholar 

  • Bermel RA, Puli SR, Rudick RA et al (2005) Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity. Arch Neurol 62:1371–1376

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt A, Fan LW, Pang Y (2014) Strategies for myelin regeneration: lessons learned from development. Neural Regen Res 9:1347–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi X, Zhang Y, Yan B et al (2012) Quetiapine prevents oligodendrocyte and myelin loss and promotes maturation of oligodendrocyte progenitors in the hippocampus of global cerebral ischemia mice. J Neurochem 123:14–20

    Article  CAS  PubMed  Google Scholar 

  • Bin JM, Rajasekharan S, Kuhlmann T et al (2013) Full-length and fragmented netrin-1 in multiple sclerosis plaques are inhibitors of oligodendrocyte precursor cell migration. Am J Pathol 183:673–680

    Article  CAS  PubMed  Google Scholar 

  • Binamé F, Sakry D, Dimou L, Jolivel V, Trotter J (2013) NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 33:10858–10874

    Article  PubMed  CAS  Google Scholar 

  • Birey F, Kloc M, Chavali M et al (2015) Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88:941–956

    Article  CAS  PubMed  Google Scholar 

  • Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732

    Article  PubMed  Google Scholar 

  • Bø L, Esiri M, Evangelou N, Kuhlmann T (2013) Demyelination and remyelination in multiple sclerosis:23–45

    Google Scholar 

  • Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O (2009) Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum Brain Mapp 30:2852–2861

    Article  PubMed  Google Scholar 

  • Boggild MD, Williams R, Haq N, Hawkins CP (1996) Cortical plaques visualised by fluid-attenuated inversion recovery imaging in relapsing multiple sclerosis. Neuroradiology 38(Suppl 1):S10–S13

    Article  PubMed  Google Scholar 

  • Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128:191–213

    Article  CAS  PubMed  Google Scholar 

  • Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125:841–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  • Bramow S, Frischer JM, Lassmann H et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133:2983–2998

    Article  PubMed  Google Scholar 

  • Brass SD, Benedict RHB, Weinstock-Guttman B, Munschauer F, Bakshi R (2006) Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Mult Scler 12:437–444

    Article  CAS  PubMed  Google Scholar 

  • Bribián A, Barallobre MJ, Soussi-Yanicostas N, Castro F (2006) Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve. Mol Cell Neurosci 33:2–14

    Article  PubMed  CAS  Google Scholar 

  • Bribián A, Esteban PF, Clemente D et al (2008) A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors. Dev Neuropsychol 68:1503–1516

    Google Scholar 

  • Brink BP, Veerhuis R, EC B, Valk P v, CD D, L B (2005) The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J Neuropathol Exp Neurol 64:147–155

    Article  CAS  PubMed  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I an autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    Article  CAS  PubMed  Google Scholar 

  • Brosnan CF, John GR (2009) Revisiting Notch in remyelination of multiple sclerosis lesions. J Clin Invest 119:10–13

    CAS  PubMed  Google Scholar 

  • Brown RA, Narayanan S, Arnold DL (2014) Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin 6:20–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Butt AM, Duncan A, Hornby MF et al (1999) Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26:84–91

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Qi Y, Hu X et al (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45:41–53

    Article  CAS  PubMed  Google Scholar 

  • Calabrese M, Stefano N, Atzori M et al (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422

    Article  PubMed  Google Scholar 

  • Calabrese M, Rinaldi F, Grossi P et al (2010) Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 16:1220–1228

    Article  PubMed  Google Scholar 

  • Calabrese M, Grossi P, Favaretto A et al (2012) Cortical pathology in multiple sclerosis patients with epilepsy: a 3 year longitudinal study. J Neurol Neurosurg Psychiatry 83:49–54

    Article  CAS  PubMed  Google Scholar 

  • Calabrese M, Favaretto A, Poretto V et al (2013) Low degree of cortical pathology is associated with benign course of multiple sclerosis. Mult Scler 19:904–911

    Article  PubMed  Google Scholar 

  • Calza L, Fernandez M, Giardino L (2010) Cellular approaches to central nervous system remyelination stimulation: thyroid hormone to promote myelin repair via endogenous stem and precursor cells. J Mol Endocrinol 44:13–23

    Article  CAS  PubMed  Google Scholar 

  • Câmara J, ffrench-Constant C (2007) Lessons from oligodendrocyte biology on promoting repair in multiple sclerosis. J Neurol 254:I15–I22

    Article  CAS  Google Scholar 

  • Cannella B, Gaupp S, Omari KM, Raine CS (2007) Multiple sclerosis: death receptor expression and oligodendrocyte apoptosis in established lesions. J Neuroimmunol 188(1–2):128–37, Epub 2007 Jul 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caringella AM, Naro E, Loverro G (2011) Clinical function of estrogen receptors in endometrial cancer. Minerva Ginecol 63:495–504

    CAS  PubMed  Google Scholar 

  • Carroll WM, Jennings AR, Ironside LJ (1998) Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121(Pt 2):293–302

    Article  PubMed  Google Scholar 

  • Caruso D, Melis M, Fenu G et al (2014) Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem 130:591–597

    Article  CAS  PubMed  Google Scholar 

  • Cayre M, Courtes S, Martineau F et al (2013) Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination. Development 140:3107–3117

    Article  CAS  PubMed  Google Scholar 

  • Chalah MA, Riachi N, Ahdab R, Creange A, Lefaucheur JP, Ayache SS (2015) Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation. Front Cell Neurosci 9:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK (2015) Oligodendrocyte regeneration: its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology 110(Pt B):633–643

    PubMed  Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    Article  PubMed  Google Scholar 

  • Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151

    Article  PubMed  Google Scholar 

  • Choi SR, Howell OW, Carassiti D et al (2012) Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135:2925–2937

    Article  PubMed  Google Scholar 

  • Choi SS, Lee HJ, Lim I, Satoh J, Kim SU (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9:e92325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chong SY, Rosenberg SS, Fancy SP et al (2012) Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc Natl Acad Sci U S A 109:1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Christianson MS, Mensah VA, Shen W (2015) Multiple sclerosis at menopause: potential neuroprotective effects of estrogen. Maturitas 80:133–139

    Article  CAS  PubMed  Google Scholar 

  • Chun SJ, Rasband MN, Sidman RL, Habib AA, Vartanian T (2003) Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 163:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciric B, Keulen V, Paz Soldan M, Rodriguez M, Pease LR (2004) Antibody-mediated remyelination operates through mechanism independent of immunomodulation. J Neuroimmunol 146:153–161

    Article  CAS  PubMed  Google Scholar 

  • Coebergh JA, Roosendaal SD, Polman CH, Geurts JJ, Woerkom TC (2010) Acute severe memory impairment as a presenting symptom of multiple sclerosis: a clinical case study with 3D double inversion recovery MR imaging. Mult Scler 16:1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C (2007) The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther 323:626–635

    Article  CAS  PubMed  Google Scholar 

  • Coelho RP, Saini HS, Sato-Bigbee C (2010) Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat 91:139–144

    Article  CAS  PubMed  Google Scholar 

  • Cohen JA, Chun J (2011) Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann Neurol 69:759–777

    Article  CAS  PubMed  Google Scholar 

  • Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415

    Article  CAS  PubMed  Google Scholar 

  • Cohen JA, Coles AJ, Arnold DL et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Coles AJ, Twyman CL, Arnold DL et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380:1829–1839

    Article  CAS  PubMed  Google Scholar 

  • Comi G, Pulizzi A, Rovaris M et al (2008) Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 371:2085–2092

    Article  CAS  PubMed  Google Scholar 

  • Comi G, Jeffery D, Kappos L et al (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  • Confavreux C, Vukusic S (2014) The clinical course of multiple sclerosis. Handb Clin Neurol 122:343–369

    Article  PubMed  Google Scholar 

  • Connor JR, Menzies SL (1995) Cellular management of iron in the brain. J Neurol Sci 134:33–44

    Article  CAS  PubMed  Google Scholar 

  • Cottrell DA, Kremenchutzky M, Rice GP et al (1999) The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain 122(Pt 4):625–639

    Article  PubMed  Google Scholar 

  • Craelius W, Migdal MW, Luessenhop CP, Sugar A, Mihalakis I (1982) Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med 106:397–399

    CAS  PubMed  Google Scholar 

  • Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB (2014) Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin 4:182–189

    Article  CAS  PubMed  Google Scholar 

  • Crawford DK, Mangiardi M, Song B et al (2010) Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133:2999–3016

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford AH, Chambers C, Franklin RJ (2013) Remyelination: the true regeneration of the central nervous system. J Comp Pathol 149:242–254

    Article  CAS  PubMed  Google Scholar 

  • Crawford AH, Tripathi RB, Foerster S et al (2016) Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am J Pathol 186(3):511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui QL, Kuhlmann T, Miron VE et al (2013) Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am J Pathol 183:516–525

    Article  CAS  PubMed  Google Scholar 

  • D’Intino G, Lorenzini L, Fernandez M et al (2011) Triiodothyronine administration ameliorates the demyelination/remyelination ratio in a non-human primate model of multiple sclerosis by correcting tissue hypothyroidism. J Neuroendocrinol 23:778–790

    Article  PubMed  CAS  Google Scholar 

  • Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488

    Article  CAS  PubMed  Google Scholar 

  • Debernard L, Melzer TR, Alla S et al (2015) Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis. Psychiatry Res 234:352–361

    Article  PubMed  Google Scholar 

  • Decker L, Avellana-Adalid V, Nait-Oumesmar B, Durbec P, Baron-Van Evercooren A (2000) Oligodendrocyte precursor migration and differentiation: combined effects of PSA residues, growth factors, and substrates. Mol Cell Neurosci 16:422–439

    Article  CAS  PubMed  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29:313–326

    Article  CAS  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Lv Z, Fan X et al (2014) Vitamin D status and the risk of multiple sclerosis: a systematic review and meta-analysis. Neurosci Lett 570:108–113

    Article  CAS  PubMed  Google Scholar 

  • Dubois-Dalcq M, Murray K (2000) Why are growth factors important in oligodendrocyte physiology? Pathol Biol (Paris) 48:80–86

    CAS  Google Scholar 

  • Dutta R, McDonough J, Yin X et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  CAS  PubMed  Google Scholar 

  • Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P (2015) The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation 12:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eshed-Eisenbach Y, Peles E (2013) The making of a node: a co-production of neurons and glia. Curr Opin Neurobiol 23:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Evangelou N, Esiri MM, mith S S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    Article  CAS  PubMed  Google Scholar 

  • Falcao AM, Marques F, Novais A, Sousa N, Palha JA, Sousa JC (2012) The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci 6:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27:247–254

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Kotter MR, Harrington EP et al (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225:18–23

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Harrington EP, Baranzini SE et al (2014) Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat Neurosci 17:506–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farez MF, Correale J (2016) Sphingosine 1-phosphate signaling in astrocytes: implications for progressive multiple sclerosis. J Neurol Sci 361:60–65

    Article  CAS  PubMed  Google Scholar 

  • Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M, Weiner HL (2009) Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol 10:958–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felts PA, Woolston AM, Fernando HB et al (2005) Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 128:1649–1666

    Article  PubMed  Google Scholar 

  • Fernandez-Castaneda A, Gaultier A (2016) Adult oligodendrocyte progenitor cells – multifaceted regulators of the CNS in health and disease. Brain Behav Immun 57:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fields RD (2005) Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 11:528–531

    Article  PubMed  PubMed Central  Google Scholar 

  • Filippi M, Yousry T, Campi A et al (1996) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology 46:379–384

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Barkhof F et al (2012) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11:349–360

    Article  PubMed  Google Scholar 

  • Fischer MT, Wimmer I, Hoftberger R et al (2013) Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136:1799–1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Fox RJ, Miller DH, Phillips JT et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3(9):705–14

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–55. doi:10.1038/nrn2480

    Article  CAS  PubMed  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Frischer JM, Weigand SD, Guo Y et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78:710–721

    Article  PubMed  PubMed Central  Google Scholar 

  • From R, Eilam R, Bar-Lev DD et al (2014) Oligodendrogenesis and myelinogenesis during postnatal development effect of glatiramer acetate. Glia 62:649–665

    Article  PubMed  Google Scholar 

  • Frost E, Kiernan BW, Faissner A, ffrench-Constant C (1996) Regulation of oligodendrocyte precursor migration by extracellular matrix: evidence for substrate-specific inhibition of migration by tenascin-C. Dev Neurosci 18:266–273

    Article  CAS  PubMed  Google Scholar 

  • Fruhbeis C, Frohlich D, Kuo WP et al (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11:e1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuente AG, Errea O, Wijngaarden P et al (2015) Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J Cell Biol 211:975–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fünfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed  PubMed Central  Google Scholar 

  • Fusco C, Andreone V, Coppola G et al (2001) HLA-DRB1*1501 and response to copolymer-1 therapy in relapsing-remitting multiple sclerosis. Neurology 57(11):1976–1979

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lopez R, Martinez S (2010) Oligodendrocyte precursors originate in the parabasal band of the basal plate in prosomere 1 and migrate into the alar prosencephalon during chick development. Glia 58:1437–1450

    PubMed  Google Scholar 

  • Garcion E, Faissner A, ffrench-Constant C (2001) Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128:2485–2496

    CAS  PubMed  Google Scholar 

  • Genoud S, Lappe-Siefke C, Goebbels S et al (2002) Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 158:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F (2005a) Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol 26:572–577

    PubMed  Google Scholar 

  • Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005b) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

    Article  PubMed  Google Scholar 

  • Geurts JJ, Blezer EL, Vrenken H et al (2008) Does high-field MR imaging improve cortical lesion detection in multiple sclerosis? J Neurol 255:183–191

    Article  PubMed  Google Scholar 

  • Gibson EM, Purger D, Mount CW et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilani AA, Dash RP, Jivrajani MN, Thakur SK, Nivsarkar M (2014) Evaluation of GABAergic transmission modulation as a novel functional target for management of multiple sclerosis: exploring inhibitory effect of GABA on glutamate-mediated excitotoxicity. Adv Pharmacol Sci 2014:632376

    PubMed  PubMed Central  Google Scholar 

  • Glezer I, Lapointe A, Rivest S (2006) Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 20:750–752

    CAS  PubMed  Google Scholar 

  • Gold SM, Chalifoux S, Giesser BS, Voskuhl RR (2008) Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J Neuroinflammation 5:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gold R, Kappos L, Arnold DL et al (2012a) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Gold R, Linker RA, Stangel M (2012b) Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action. Clin Immunol 142:44–48

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt T, Antel J, Konig FB, Bruck W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72:1914–1921

    Article  CAS  PubMed  Google Scholar 

  • Goncalves RB, Coletta RD, Silverio KG et al (2011) Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res 60:409–424

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groves A, Kihara Y, Chun J (2013) Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 328:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Lang J, Sohn J, Hammond E, Chang M, Pleasure D (2015) Canonical Wnt signaling in the oligodendroglial lineage–puzzles remain. Glia 63:1671–1693

    Article  PubMed  Google Scholar 

  • Haider L, Fischer MT, Frischer JM et al (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  • Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond TR, Gadea A, Dupree J et al (2014) Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 81:588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond E, Lang J, Maeda Y et al (2015) The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/beta-catenin signaling. J Neurosci 35:5007–5022

    Article  PubMed  Google Scholar 

  • Harlow DE, Saul KE, Komuro H, Macklin WB (2015) Myelin proteolipid protein complexes with alphav integrin and AMPA receptors in vivo and regulates AMPA-dependent oligodendrocyte progenitor cell migration through the modulation of cell-surface GluR2 expression. J Neurosci 35:12018–12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JJ, Attwell D (2012) The energetics of CNS white matter. J Neurosci 32:356–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison DM, Oh J, Roy S et al (2015a) Thalamic lesions in multiple sclerosis by 7 T MRI: Clinical implications and relationship to cortical pathology. Mult Scler 21:1139–1150

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison DM, Roy S, Oh J et al (2015b) Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis. JAMA Neurol 72:1004–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Harsan LA, Steibel J, Zaremba A et al (2008) Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 28:14189–14201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley MD, Altowaijri G, Bourdette D (2014) Remyelination and multiple sclerosis: therapeutic approaches and challenges. Curr Neurol Neurosci Rep 14:485

    Article  PubMed  CAS  Google Scholar 

  • Healy BC, Ali EN, Guttmann CR et al (2009) Smoking and disease progression in multiple sclerosis. Arch Neurol 66:858–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Healy BC, Liguori M, Tran D et al (2010) HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology 75(7):634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker M, Fitzner B, Wendt M et al (2016) High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients. Mol Cell Proteomics. 15(4):1360–1380

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom AK, Sundqvist E, Baarnhielm M et al (2011) Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 134:653–664

    Article  PubMed  Google Scholar 

  • Hedstrom AK, Olsson T, Alfredsson L (2015) Smoking is a major preventable risk factor for multiple sclerosis. Mult Scler. 15(4):1360–1380

    Google Scholar 

  • Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano A, Dembitzer HM (1967) A structural analysis of the myelin sheath in the central nervous system. J Cell Biol 34:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochmeister S, Grundtner R, Bauer J et al (2006) Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol 65:855–865

    Article  CAS  PubMed  Google Scholar 

  • Hojjat SP, Cantrell CG, Carroll TJ et al (2016) Perfusion reduction in the absence of structural differences in cognitively impaired versus unimpaired RRMS patients. Mult Scler 22:1685–1694

    Article  PubMed  Google Scholar 

  • Horakova D, Cox JL, Havrdova E et al (2008) Evolution of different MRI measures in patients with active relapsing-remitting multiple sclerosis over 2 and 5 years: a case-control study. J Neurol Neurosurg Psychiatry 79:407–414

    Article  CAS  PubMed  Google Scholar 

  • van Horssen J, Brink BP, de Vries HE, Valk P, Bo L (2007) The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66:321–328

    Article  CAS  PubMed  Google Scholar 

  • van Horssen J, Drexhage JA, Flor T, Gerritsen W, van der Valk P, de Vries HE (2010) Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radic Biol Med 49:1283–1289

    Google Scholar 

  • Howe CL, Bieber AJ, Warrington AE, Pease LR, Rodriguez M (2004) Antiapoptotic signaling by a remyelination-promoting human antimyelin antibody. Neurobiol Dis 15:120–131

    Article  CAS  PubMed  Google Scholar 

  • Howell OW, Reeves CA, Nicholas R et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134:2755–2771

    Article  PubMed  Google Scholar 

  • Hu Y, Lee X, Ji B et al (2011) Sphingosine 1-phosphate receptor modulator fingolimod (FTY720) does not promote remyelination in vivo. Mol Cell Neurosci 48:72–81

    Article  CAS  PubMed  Google Scholar 

  • Huang JK, Jarjour AA, Nait Oumesmar B et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14:45–53

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Taraboletti A, Shriver LP (2015) Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes. Redox Biol 5:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16:668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui Jing Yu CC, Bhise V, Greenblatt D, Patel Y, Serafin D, Maletic-Savatic M, Krupp LB, Wagshul ME (2012) Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. NeuroImage 59:3713–3722

    Article  PubMed  Google Scholar 

  • Hussain R, El-Etr M, Gaci O et al (2011) Progesterone and Nestorone facilitate axon remyelination: a role for progesterone receptors. Endocrinology 152:3820–3831

    Article  CAS  PubMed  Google Scholar 

  • Hussain R, Ghoumari AM, Bielecki B et al (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136:132–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70:674–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isobe N, Keshavan A, Gourraud PA, Zhu AH, Datta E, Schlaeger R, Caillier SJ, Santaniello A, Lizée A, Himmelstein DS, Baranzini SE, Hollenbach J, Cree BA, Hauser SL, Oksenberg JR, Henry RG (2016) Association of HLA genetic risk burden with disease phenotypes in multiple sclerosis. JAMA Neurol 73(7):795–802. doi:10.1001/jamaneurol.2016.0980

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagielska A, Wilhite KD, Vliet KJ (2013) Extracellular acidic pH inhibits oligodendrocyte precursor viability, migration, and differentiation. PLoS One 8:e76048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillard C, Harrison S, Stankoff B et al (2005) Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25:1459–1469

    Article  CAS  PubMed  Google Scholar 

  • Jarjour AA, Manitt C, Moore SW, Thompson KM, Yuh SJ, Kennedy TE (2003) Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord. J Neurosci 23:3735–3744

    CAS  PubMed  Google Scholar 

  • Jiang L, Shen F, Degos V et al (2011) Oligogenesis and oligodendrocyte progenitor maturation vary in different brain regions and partially correlate with local angiogenesis after ischemic stroke. Transl Stroke Res 2:366–375

    Article  PubMed  PubMed Central  Google Scholar 

  • John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF (2002) Multiple sclerosis: reexpression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8(10):1115–21

    Article  CAS  PubMed  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  • Jones JL, Anderson JM, Phuah CL et al (2010) Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 133:2232–2247

    Article  PubMed  Google Scholar 

  • Jonkman LE, Fleysher L, Steenwijk MD et al (2015) Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis. Mult Scler 22(10):1306–1301

    Article  PubMed  Google Scholar 

  • Jung CG, Kim HJ, Miron VE et al (2007) Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia 55:1656–1667

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma Y, Saito F, Osawa S, Miura M (2004) A mechanism of impaired mobility of oligodendrocyte progenitor cells by tenascin C through modification of wnt signaling. FEBS Lett 568:60–64

    Article  CAS  PubMed  Google Scholar 

  • Kappos L, Radue EW, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    Article  CAS  PubMed  Google Scholar 

  • Karnezis T, Mandemakers W, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B, Tessier-Lavigne M, Bernard CC (2004) The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci 7(7):736–44, Epub 2004 Jun 6

    Article  CAS  PubMed  Google Scholar 

  • Keirstead HS, Blakemore WF (1997) Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol 56:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genet 2:2

    Google Scholar 

  • Kern KC, Sarcona J, Montag M, Giesser BS, Sicotte NL (2011) Corpus callosal diffusivity predicts motor impairment in relapsing-remitting multiple sclerosis: a TBSS and tractography study. NeuroImage 55:1169–1177

    Article  PubMed  Google Scholar 

  • Kerstetter AE, Padovani-Claudio DA, Bai L, Miller RH (2009) Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122(Pt 1):17–26

    Article  PubMed  Google Scholar 

  • Kilsdonk ID, Graaf WL, Soriano AL et al (2013) Multicontrast MR imaging at 7 T in multiple sclerosis: highest lesion detection in cortical gray matter with 3D-FLAIR. AJNR Am J Neuroradiol 34:791–796

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Steelman AJ, Koito H, Li J (2011) Astrocytes promote TNF-mediated toxicity to oligodendrocyte precursors. J Neurochem 116:53–66

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Amor S (2012) FTY720 on the way from the base camp to the summit of the mountain: relevance for remyelination. Mult Scler 18:258–263

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Amor S, Krauth R, Beyer C (2012) Multiple sclerosis: neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol 33:1–16

    Article  CAS  PubMed  Google Scholar 

  • Klaver R, Popescu V, Voorn P et al (2015) Neuronal and axonal loss in normal-appearing gray matter and subpial lesions in multiple sclerosis. J Neuropathol Exp Neurol 74:453–458

    Article  CAS  PubMed  Google Scholar 

  • Kolasinski J, Stagg CJ, Chance SA et al (2012) A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain 135:2938–2951

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhle J, Pohl C, Mehling M et al (2007) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356:371–378

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Patel R, Moore S et al (2013) Estrogen receptor beta ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 56:131–144

    Article  CAS  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti C, Stadelmann C et al (2005) Cortical demyelination and diff use white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  • Lasiene J, Shupe L, Perlmutter S, Horner P (2008) No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. J Neurosci 28:3887–3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann H (2010) Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 225:2–8

    Article  PubMed  Google Scholar 

  • Lassmann H (2012) Cortical lesions in multiple sclerosis: inflammation versus neurodegeneration. Brain 135:2904–2905

    Article  PubMed  Google Scholar 

  • Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333:1–4

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (2014) Multiple sclerosis: lessons from molecular neuropathology. Exp Neurol 262(Pt A):2–7. doi:10.1016/j.expneurol.2013.12.003, Epub 2013 Dec 14

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Horssen J (2015) Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta 1862(3):506–510

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  • Leiton CV, Aranmolate A, Eyermann C et al (2015) Laminin promotes metalloproteinase-mediated dystroglycan processing to regulate oligodendrocyte progenitor cell proliferation. J Neurochem 135:522–538

    Article  CAS  PubMed  Google Scholar 

  • Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Tench C, Morgan PS, Constantinescu CS (2008) Use of combined conventional and quantitative MRI to quantify pathology related to cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:437–441

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Taylor BV, Simpson S Jr et al (2014) Novel modulating effects of PKC family genes on the relationship between serum vitamin D and relapse in multiple sclerosis. J Neurol Neurosurg Psychiatry 85:399–404

    Article  PubMed  Google Scholar 

  • Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linington C, Engelhardt B, Kapocs G, Lassman H (1992) Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T cells and demyelinating antibody. J Neuroimmunol 40:219–224

    Article  CAS  PubMed  Google Scholar 

  • Linker RA, Lee DH, Ryan S et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692

    Article  PubMed  Google Scholar 

  • Liu Z, Hu X, Cai J et al (2007a) Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302:683–693

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Johnson TV, Lin J et al (2007b) T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 37:3143–3154

    Article  CAS  PubMed  Google Scholar 

  • Loken-Amsrud KI, Holmoy T, Bakke SJ et al (2012) Vitamin D and disease activity in multiple sclerosis before and during interferon-beta treatment. Neurology 79:267–273

    Article  CAS  PubMed  Google Scholar 

  • Low K, Culbertson M, Bradke F, Tessier-Lavigne M, Tuszynski MH (2008) Netrin-1 is a novel myelin-associated inhibitor to axon growth. J Neurosci 28:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (1999) A quantitative analysis of oligodendrocytes in multiple sclerosis lesions: a study of 113 cases. Brain 122:2279–2295

    Article  PubMed  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Popescu BF, Bunyan RF et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwin SK (1980) Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab Investig 43:382–387

    CAS  PubMed  Google Scholar 

  • Lytle JM, Chittajallu R, Wrathall JR, Gallo V (2009) NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury. Glia 57:270–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Madeira A, Burgelin I, Perron H, Curtin F, Lang AB, Faucard R (2016) MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: relevance of GNbAC1 in multiple sclerosis treatment. J Neuroimmunol 291:29–38

    Article  CAS  PubMed  Google Scholar 

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

    Article  CAS  PubMed  Google Scholar 

  • Maire CL, Wegener A, Kerninon C, Nait Oumesmar B (2010) Gain-of-function of Olig transcription factors enhances oligodendrogenesis and myelination. Stem Cells 28:1611–1622

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Liang AC, Miyamoto N, Lo EH, Arai K (2013) Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Front Cell Neurosci 7:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manitt C, Colicos MA, Thompson KM, Rousselle E, Peterson AC, Kennedy TE (2001) Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord. J Neurosci 21:3911–3922

    CAS  PubMed  Google Scholar 

  • Manitt C, Wang D, Kennedy TE, Howland DR (2006) Positioned to inhibit: netrin-1 and netrin receptor expression after spinal cord injury. J Neurosci Res 84:1808–1820

    Article  CAS  PubMed  Google Scholar 

  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    Article  PubMed  PubMed Central  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    PubMed  PubMed Central  Google Scholar 

  • Markham JA, Greenough WT (2004) Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol 1:351–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  CAS  PubMed  Google Scholar 

  • Mecklenburg N, Garcia-Lopez R, Puelles E, Sotelo C, Martinez S (2011) Cerebellar oligodendroglial cells have a mesencephalic origin. Glia 59:1946–1957

    Article  PubMed  Google Scholar 

  • Mei F, Guo S, He Y et al (2012) Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation. PLoS One 7:e42746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensch S, Baraban M, Almeida R et al (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18:628–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T (2014) Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol 14:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi S, Hu B, Hahm K et al (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13:1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Miller RH, Ono K (1998) Morphological analysis of the early stages of oligodendrocyte development in the vertebrate central nervous system. Microsc Res Tech 41:441–453

    Article  CAS  PubMed  Google Scholar 

  • Milner R, Edwards G, Streuli C, Ffrench-Constant C (1996) A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J Neurosci 16:7240–7252

    CAS  PubMed  Google Scholar 

  • Miron VE, Hall JA, Kennedy TE, Soliven B, Antel JP (2008a) Cyclical and dose-dependent responses of adult human mature oligodendrocytes to fingolimod. Am J Pathol 173:1143–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miron VE, Schubart A, Antel JP (2008b) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274:13–17

    Article  CAS  PubMed  Google Scholar 

  • Miron VE, Kuhlmann T, Antel JP (2011) Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 1812:184–193

    Article  CAS  PubMed  Google Scholar 

  • Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  CAS  PubMed  Google Scholar 

  • Mitsunaga Y, Ciric B, Keulen V et al (2002) Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J 16:1325–1327

    CAS  PubMed  Google Scholar 

  • Moore S, Khalaj AJ, Yoon J et al (2013) Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav 3:664–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Morandi E, Tarlinton RE, Gran B (2015) Multiple sclerosis between genetics and infections: human endogenous retroviruses in monocytes and macrophages. Front Immunol 6:647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moutsianas L, Jostins L, Beecham AH et al (2015) International IBD Genetics Consortium (IIBDGC); International Multiple Sclerosis Genetics Consortium. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet 47(10):1107–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyon S, Dubessy AL, Aigrot MS et al (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 35:4–20

    Article  PubMed  CAS  Google Scholar 

  • Mpandzou G, Ait Ben Haddou E, Regragui W, Benomar A, Yahyaoui M (2016) Vitamin D deficiency and its role in neurological conditions: a review. Rev Neurol (Paris) 172(2):109–122

    Article  CAS  Google Scholar 

  • Munzel EJ, Williams A (2013) Promoting remyelination in multiple sclerosis-recent advances. Drugs 73:2017–2029

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Na SY, Cao Y, Toben C et al (2008) Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain 131:2353–2365

    Article  PubMed  Google Scholar 

  • Nait-Oumesmar B, Picard-Riera N, Kerninon C, Baron-Van Evercooren A (2008) The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci 265:26–31

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T, Taguchi A, Fujimori Y et al (2009) Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci 29:1842–1852

    Article  PubMed  Google Scholar 

  • Nakagomi T, Molnar Z, Nakano-Doi A et al (2011) Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 20:2037–2051

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S, Francis S, Sled JG, Santos AC, Antel S, Levesque I, Brass S, Lapierre Y, Sappey-Marinier D, Pike GB, Arnold DL (2006) Axonal injury in the cerebral normal-appearing white matter of patients with multiple sclerosis is related to concurrent demyelination in lesions but not to concurrent demyelination in normal-appearing white matter. NeuroImage 29:637–642

    Article  PubMed  Google Scholar 

  • Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  CAS  PubMed  Google Scholar 

  • Nelson F, Poonawalla A, Hou P, Wolinsky JS, Narayana PA (2008) 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult Scler 14:1214–1219

    Article  CAS  PubMed  Google Scholar 

  • Nelson F, Datta S, Garcia N et al (2011) Intracortical lesions by 3 T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult Scler 17:1122–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen D, Stangel M (2001) Expression of the chemokine receptors CXCR1 and CXCR2 in rat oligodendroglial cells. Dev Brain Res 128:77–81

    Article  CAS  Google Scholar 

  • Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55:1287–1299

    Article  PubMed  Google Scholar 

  • Niehaus A, Shi J, Grzenkowski M et al (2000) Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann Neurol 48:362–371

    Article  CAS  PubMed  Google Scholar 

  • Nitsch R, Pohl EE, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F (2004) Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J Neurosci 24:2458–2464

    Article  CAS  PubMed  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  • Novgorodov AS, El-Alwani M, Bielawski J, Obeid LM, Gudz TI (2007) Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J 21:1503–1514

    Article  CAS  PubMed  Google Scholar 

  • Nunes MC, Roy NS, Keyoung HM et al (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9:439–447

    Article  CAS  PubMed  Google Scholar 

  • Nunez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25:761–776

    Article  CAS  PubMed  Google Scholar 

  • O’Connor KC, Appel H, Bregoli L et al (2005) Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J Immunol 175:1974–1982

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Meara RW, Cummings SE, Michalski JP, Kothary R (2016) A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neurosci 17:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofengeim D, Ito Y, Najafov A et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohira K (2011) Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci 68:1645–1656

    Article  CAS  PubMed  Google Scholar 

  • Okuda DT, Srinivasan R, Oksenberg JR et al (2009) Genotype-phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain 132(pt 1):250–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omari KM, John GR, Sealfon SC, Raine CS (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128:1003–1015

    Article  PubMed  Google Scholar 

  • Ono K, Yasui Y, Rutishauser U, Miller RH (1997) Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron 19:283–292

    Article  CAS  PubMed  Google Scholar 

  • Ortega F, Gascon S, Masserdotti G et al (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15:602–613

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Oltmann A, Stein A et al (2011) Intrathecal EBV antibodies are part of the polyspecific immune response in multiple sclerosis. Neurology 76:1316–1321

    Article  CAS  PubMed  Google Scholar 

  • Oude Engberink RD, Blezer EL, Dijkstra CD, Pol SM, Toorn A, Vries HE (2010) Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis. NMR Biomed 23:1087–1096

    Article  PubMed  Google Scholar 

  • Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    Article  CAS  PubMed  Google Scholar 

  • Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33(3):277–87, Epub 2007 Apr 18

    Article  CAS  PubMed  Google Scholar 

  • Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A 107:11062–11067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    Article  PubMed  Google Scholar 

  • Pauli F, Reindl M, Ehling R et al (2008) Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult Scler 14:1026–1030

    Article  PubMed  Google Scholar 

  • Peferoen LA, Vogel DY, Ummenthum K et al (2015) Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol 74:48–63

    Article  CAS  PubMed  Google Scholar 

  • Penderis J, Shields SA, Franklin RJ (2003) Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeatedepisodes of focal demyelination in the rat central nervous system. Brain 126(6):1382–1391

    Article  PubMed  Google Scholar 

  • Peterson JW, Bö L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  CAS  PubMed  Google Scholar 

  • Pham LD, Hayakawa K, Seo JH et al (2012) Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 60:875–881

    Article  PubMed  PubMed Central  Google Scholar 

  • Piaton G, Williams A, Seilhean D, Lubetzki C (2009) Remyelination in multiple sclerosis. Prog Brain Res 175:453–464

    Article  CAS  PubMed  Google Scholar 

  • Piaton G, Aigrot MS, Williams A et al (2011) Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134:1156–1167

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Souberbielle JC (2010) Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis? Brain 133:1869–1888

    Article  PubMed  Google Scholar 

  • Pirko I, Ciric B, Gamez J et al (2004) A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 18:1577–1579

    CAS  PubMed  Google Scholar 

  • Pitt D, Boster A, Pei W et al (2010) Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch Neurol 67:812–818

    Article  PubMed  Google Scholar 

  • Pittas F, Ponsonby AL, Mei IA et al (2009) Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J Neurol 256:577–585

    Article  PubMed  Google Scholar 

  • Pittock SJ, Reindl M, Achenbach S et al (2007) Myelin oligodendrocyte glycoprotein antibodies in pathologically proven multiple sclerosis: frequency, stability and clinicopathologic correlations. Mult Scler 13:7–16

    Article  CAS  PubMed  Google Scholar 

  • Planey SL, Kuma r R, Arnott JA (2014) Estrogen receptors (ERalpha versus ERbeta): friends or foes in human biology? J Recept Signal Transduct Res 34:1–5

    Article  CAS  PubMed  Google Scholar 

  • Pohl D, Rostasy K, Jacobi C et al (2010) Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis. J Neurol 257:212–216

    Article  CAS  PubMed  Google Scholar 

  • Polman C, Barkhof F, Sandberg-Wollheim M et al (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64:987–991

    Article  CAS  PubMed  Google Scholar 

  • Popescu BF, Pirko I, Lucchinetti CF (2013) Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn) 19:901–921

    Google Scholar 

  • Prentice RL, Huang Y, Hinds DA et al (2009) Variation in the FGFR2 gene and the effects of postmenopausal hormone therapy on invasive breast cancer. Cancer Epidemiol Biomark Prev 18:3079–3085

    Article  CAS  Google Scholar 

  • Prestoz L, Chatzopoulou E, Lemkine G et al (2004) Control of axonophilic migration of oligodendrocyte precursor cells by Eph–ephrin interaction. Neuron Glia Biol 1:73–83

    Article  PubMed  Google Scholar 

  • Preziosa P, Rocca MA, Pagani E et al (2016) Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a multicenter study. Hum Brain Mapp 37(4):1627–1644

    Article  PubMed  Google Scholar 

  • Prineas JW, Kwon EE, Cho E-S et al (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657

    Article  CAS  PubMed  Google Scholar 

  • Pul R, Moharregh-Khiabani D, Skuljec J et al (2011) Glatiramer acetate modulates TNF-alpha and IL-10 secretion in microglia and promotes their phagocytic activity. J NeuroImmune Pharmacol 6:381–388

    Article  PubMed  Google Scholar 

  • Ramanathan S, Dale RC, Brilot F (2015) Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev 15(4):307–324

    Article  PubMed  CAS  Google Scholar 

  • Rastinejad F (2001) Retinoid X receptor and its partners in the nuclear receptor family. Curr Opin Struct Biol 11:33–38

    Article  CAS  PubMed  Google Scholar 

  • Raz E, Cercignani M, Sbardella E et al (2010) Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter. Radiology 254:227–234

    Article  PubMed  Google Scholar 

  • Redpath TW, Smith FW (1994) Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol 67:1258–1263

    Article  CAS  PubMed  Google Scholar 

  • Relucio J, Tzvetanova ID, Ao W, Lindquist S, Colognato H (2009) Laminin alters fyn regulatory mechanisms and promotes oligodendrocyte development. J Neurosci 29:11794–11806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relucio J, Menezes MJ, Miyagoe-Suzuki Y, Takeda S, Colognato H (2012) Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone. Glia 60:1451–1467

    Article  PubMed  Google Scholar 

  • Robinson S, Tani M, Strieter RM, Ransohoff RM, Miller RH (1998) The chemokine growth-regulated oncogene-α promotes spinal cord oligodendrocyte precursor proliferation. J Neurosci 18:10457–10463

    CAS  PubMed  Google Scholar 

  • Roosendaal SD, Moraal B, Vrenken H et al (2008) In vivo MR imaging of hippocampal lesions in multiple sclerosis. J Magn Reson Imaging 27:726–731

    Article  PubMed  Google Scholar 

  • Roosendaal SD, Geurts JJ, Vrenken H et al (2009) Regional DTI differences in multiple sclerosis patients. NeuroImage 44:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Rosato Siri MV, Badaracco ME, Pasquini JM (2013) Glatiramer promotes oligodendroglial cell maturation in a cuprizone-induced demyelination model. Neurochem Int 63:10–24

    Article  CAS  PubMed  Google Scholar 

  • Rosjo E, Steffensen LH, Jorgensen L et al (2015) Vitamin D supplementation and systemic inflammation in relapsing-remitting multiple sclerosis. J Neurol 262:2713–2721

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Lo Giudice T, De Chiara V, Musella A, Studer V, Motta C, Bernardi G, Martino G, Furlan R, Martorana A, Centonze D (2012) Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. Br J Pharmacol 165(4):861–9. doi:10.1111/j.1476-5381.2011.01579.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222

    Article  CAS  PubMed  Google Scholar 

  • Rudick RA, Mi S, Sandrock AW Jr (2008) LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert Opin Biol Ther 8:1561–1570

    Article  CAS  PubMed  Google Scholar 

  • Sakry D, Neitz A, Singh J et al (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato F, Martinez NE, Stewart EC, Omura S, Alexander JS, Tsunoda I (2015) “Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the Inside-Out model. BMC Neurol 15:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol 33:99–107

    Article  CAS  PubMed  Google Scholar 

  • Scannevin RH, Chollate S, Jung MY et al (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341:274–284

    Article  CAS  PubMed  Google Scholar 

  • Schnaar RL (2010) Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 584:1741–1747

    Article  CAS  PubMed  Google Scholar 

  • Schnädelbach O, Blaschuk OW, Symonds M, Gour BJ, Doherty P, Fawcett JW (2000) N-cadherin influences migration of oligodendrocytes on astrocyte monolayers. Mol Cell Neurosci 15:288–302

    Article  PubMed  CAS  Google Scholar 

  • Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM (2012) Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 6:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121(Pt 12):2221–2228

    Article  PubMed  Google Scholar 

  • Seewann A, Vrenken H, Valk P et al (2009) Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch Neurol 66:601–609

    Article  PubMed  Google Scholar 

  • Seewann A, Kooi EJ, Roosendaal SD et al (2012) Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 78:302–308

    Article  CAS  PubMed  Google Scholar 

  • Sicotte NL, Giesser BS, Tandon V et al (2007) Testosterone treatment in multiple sclerosis: a pilot study. Arch Neurol 64:683–688

    Article  PubMed  Google Scholar 

  • Simon JH (2006) Brain atrophy in multiple sclerosis: what we know and would like to know. Mult Scler 12:679–687

    Article  CAS  PubMed  Google Scholar 

  • Simon B, Schmidt S, Lukas C et al (2010) Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol 20:1675–1683

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson S Jr, Taylor B, Blizzard L et al (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68:193–203

    CAS  PubMed  Google Scholar 

  • Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102

    Article  CAS  PubMed  Google Scholar 

  • Smestad C, Brynedal B, Jonasdottir G et al (2007) The impact of HLA-A and -DRB1 on age at onset, disease course and severity in Scandinavian multiple sclerosis patients. Eur J Neurol 14(8):835–840

    Article  CAS  PubMed  Google Scholar 

  • Smolders J, Menheere P, Kessels A, Damoiseaux J, Hupperts R (2008) Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult Scler 14:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Snaidero N, Mobius W, Czopka T et al (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel RA (2006) Ephrin A receptors and ligands in lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 15:35–45

    Article  Google Scholar 

  • Sohn J, Natale J, Chew LJ et al (2006) Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J Neurosci 26:9722–9735

    Article  CAS  PubMed  Google Scholar 

  • Sorensen TL, Tani M, Jensen J et al (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sormani MP, Bonzano L, Roccatagliata L, Mancardi GL, Uccelli A, Bruzzi P (2010) Surrogate endpoints for EDSS worsening in multiple sclerosis. A meta-analytic approach. Neurology 75:302–309

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, Castro F, Bras B et al (2002) Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci 22:5992–6004

    CAS  PubMed  Google Scholar 

  • Stoffels JM, Hoekstra D, Franklin RJ, Baron W, Zhao C (2015) The EIIIA domain from astrocyte-derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination. Glia 63:242–256

    Article  PubMed  Google Scholar 

  • Strassburger-Krogias K, Ellrichmann G, Krogias C, Altmeyer P, Chan A, Gold R (2014) Fumarate treatment in progressive forms of multiple sclerosis: first results of a single-center observational study. Ther Adv Neurol Disord 7:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto Y, Taniguchi M, Yagi T, Akagi Y, Nojyo Y, Tamamaki N (2001) Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 128:3321–3330

    CAS  PubMed  Google Scholar 

  • Sun X, Bakhti M, Fitzner D et al (2015) Quantified CSF antibody reactivity against myelin in multiple sclerosis. Ann Clin Transl Neurol 2:1116–1123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szuchet S, Nielsen LL, Domowicz MS, Austin JR 2nd, Arvanitis DL (2015) CNS myelin sheath is stochastically built by homotypic fusion of myelin membranes within the bounds of an oligodendrocyte process. J Struct Biol 190:56–72

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M et al (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148

    Article  CAS  PubMed  Google Scholar 

  • Talbott JF, Loy DN, Liu Y et al (2005) Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Exp Neurol 192:11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallantyre EC, Morgan PS, Dixon JE et al (2010) 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 32:971–977

    Article  PubMed  Google Scholar 

  • Tepavcevic V, Kerninon C, Aigrot MS et al (2014) Early netrin-1 expression impairs central nervous system remyelination. Ann Neurol 76:252–268

    Article  CAS  PubMed  Google Scholar 

  • Thone J, Ellrichmann G, Seubert S et al (2012) Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol 180:267–274

    Article  PubMed  CAS  Google Scholar 

  • Tiwari-Woodruff S, Beltran-Parrazal L, Charles A, Keck T, Vu T, Bronstein J (2006) K+ channel KV3.1 associates with OSP/claudin-11 and regulates oligodendrocyte development. Am J Phys Cell Physiol 291:C687–C698

    Article  CAS  Google Scholar 

  • Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  • Tomassini V, Giglio L, Reindl M et al (2007) Anti-myelin antibodies predict the clinical outcome after a first episode suggestive of MS. Mult Scler 13:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Tran JQ, Rana J, Barkhof F et al (2014) Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 1:e18

    Article  PubMed  PubMed Central  Google Scholar 

  • Triantafyllou N, Thoda P, Armeni E et al (2015) Association of sex hormones and glucose metabolism with the severity of multiple sclerosis. Int J Neurosci 1–8

    Google Scholar 

  • Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 30:16383–16390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H-H, Frost E, To, V et al (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383

    Article  CAS  PubMed  Google Scholar 

  • Tsai HH, Niu J, Munji R et al (2016) Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351:379–384

    Article  CAS  PubMed  Google Scholar 

  • Uddin MN, Lebel RM, Seres P, Blevins G, Wilman AH (2015) Spin echo transverse relaxation and atrophy in multiple sclerosis deep gray matter: a two-year longitudinal study. Mult Scler 22(9):1133–1134

    Article  PubMed  Google Scholar 

  • Uribe-San-Martin R, Ciampi-Diaz E, Suarez-Hernandez F, Vasquez-Torres M, Godoy-Fernandez J, Carcamo-Rodriguez C (2014) Prevalence of epilepsy in a cohort of patients with multiple sclerosis. Seizure 23:81–83

    Article  PubMed  Google Scholar 

  • Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107

    Article  PubMed  Google Scholar 

  • Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16:1370–1372

    Article  CAS  PubMed  Google Scholar 

  • Vogt J, Paul F, Aktas O et al (2009) Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Ann Neurol 66:310–322

    Article  PubMed  Google Scholar 

  • Vrenken H, Seewann A, Knol DL et al (2010) Diffusely abnormal white matter in progressive multiple sclerosis: in vivo quantitative MR imaging characterisation and comparison between disease types. AJNR Am J Neuroradiol 31:541–548

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Sawano T, anaka T T et al (2016) Absence of Sema4D improves oligodendrocyte recovery after cerebral ischemia/reperfusion injury in mice. Neurosci Res 108:6–11

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chuikov S, Taitano S et al (2015) Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci 16:13885–13907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol 4:159–169

    Article  CAS  PubMed  Google Scholar 

  • Wegener A, Deboux C, Bachelin C et al (2015) Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain 138:120–135

    Article  PubMed  Google Scholar 

  • Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967

    Article  CAS  PubMed  Google Scholar 

  • Weiner HL (2008) A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol 255(Suppl 1):3–11

    Article  CAS  PubMed  Google Scholar 

  • White R, Kramer-Albers EM (2014) Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 7:284

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams A, Piaton G, Aigrot MS et al (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565

    Article  PubMed  Google Scholar 

  • Williams R, Buchheit CL, Berman NE, LeVine SM (2012) Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 120:7–25

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Xu H, Zhang Y et al (2008) Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry 13:697–708

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Yang SH (2015) Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res 1623:63–73. doi:10.1016/j.brainres.2015.03.026, Epub 2015 Mar 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Li Z, Zhang GX, Guan Y (2014) Wnt signaling in remyelination in multiple sclerosis: friend or foe? Mol Neurobiol 49:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. Regional development of the brain in early life 3–70

    Google Scholar 

  • Yin W, Hu B (2014) Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish. Exp Neurol 251:72–83

    Article  CAS  PubMed  Google Scholar 

  • Young KM, Psachoulia K, Tripathi RB et al (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen TJ, Silbereis JC, Griveau A et al (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158:383–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawadzka M, Rivers LE, Fancy SP et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590

    Article  CAS  PubMed  Google Scholar 

  • Zeis T, Enz L, Schaeren-Wiemers N (2015) The immunomodulatory oligodendrocyte. Brain Res 1641(Pt A):139–148

    PubMed  Google Scholar 

  • Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ (2011) Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237:73–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang H, Wang L et al (2012) Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophr Res 138:8–17

    Article  PubMed  Google Scholar 

  • Zhang M, Ma Z, Qin H, Yao Z (2015a) Thyroid hormone potentially benefits multiple sclerosis via facilitating remyelination. Mol Neurobiol 53(7):4406–4416

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang YP, Pepinsky B et al (2015b) Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp Neurol 266:68–73

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jonkman L, Klauser A et al (2016) Multi-scale MRI spectrum detects differences in myelin integrity between MS lesion types. Mult Scler 22(12):1569–1577

    Article  PubMed  Google Scholar 

  • Zhornitsky S, Wee Yong V, Koch MW et al (2013) Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neurosci Ther 19:737–744

    CAS  PubMed  Google Scholar 

  • Zivadinov R, Weinstock-Guttman B, Hashmi K et al (2009) Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology 73:504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivadinov R, Hussein S, Bergsland N, Minagar A, Dwyer MG (2012) Magnetization transfer imaging of acute black holes in patients on glatiramer acetate. Front Biosci E4:1496

    Article  CAS  Google Scholar 

  • van Zwam M, Huizinga R, Melief MJ et al (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med (Berl) 87:273–286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks to the staff of Neurology Clinic of Fundeni Clinical Institute and University of Medicine and Pharmacy “Carol Davila” Bucharest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Octaviana Dulamea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dulamea, A.O. (2017). Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. In: Asea, A., Geraci, F., Kaur, P. (eds) Multiple Sclerosis: Bench to Bedside. Advances in Experimental Medicine and Biology, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-319-47861-6_7

Download citation

Publish with us

Policies and ethics