Skip to main content

Heritable Thoracic Aortic Disorders

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

Heritable thoracic aortic disease (H-TAD) comprises a heterogeneous group of disorders with as a common denominator aortic aneurysm or dissection on one or several levels from the aortic annulus till the diaphragm. Depending on the presence or absence of manifestations in other organ systems, H-TAD can be further subdivided into syndromic and nonsyndromic H-TAD (NS H-TAD). For both clinical entities, multiple underlying gene defects have been identified, although we must recognize that in a substantial number of patients and families no causal mutation has been identified, defining them as “Heritable” but strictly speaking not (yet) as “Genetic.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.

    Article  CAS  PubMed  Google Scholar 

  2. Faivre L, Masurel-Paulet A, Collod-Beroud G, Callewaert BL, Child AH, Stheneur C, et al. Clinical and molecular study of 320 children with Marfan syndrome and related type I fibrillinopathies in a series of 1009 probands with pathogenic FBN1 mutations. Pediatrics. 2009a;123(1):391–8 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19117906&retmode=ref&cmd=prlinks.

    Article  PubMed  Google Scholar 

  3. Milewicz DM, Michael K, Fisher N, Coselli JS, Markello T, Biddinger A. Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation. 1996;94(11):2708–11.

    Article  CAS  PubMed  Google Scholar 

  4. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10):673–80.

    Article  CAS  PubMed  Google Scholar 

  5. Campens L, Callewaert B, Muiño Mosquera L, Renard M, Symoens S, de Paepe A, et al. Gene panel sequencing in heritable thoracic aortic disorders and related entities – results of comprehensive testing in a cohort of 264 patients. Orphanet Journal of Rare Diseases. 2015a;10(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barbier M, Gross M-S, Aubart M, Hanna N, Kessler K, Guo D-C, et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet. 2014;95(6):736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788–98.

    Article  CAS  PubMed  Google Scholar 

  8. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  9. Stheneur C, Collod-Beroud G, Faivre L, Gouya L, Sultan G, Le Parc J-M, et al. Identification of 23 TGFBR2 and 6 TGFBR1 gene mutations and genotype-phenotype investigations in 457 patients with Marfan syndrome type I and II, Loeys-Dietz syndrome and related disorders. Hum Mutat. 2008;29(11):E284–95.

    Article  PubMed  Google Scholar 

  10. Singh KK, Rommel K, Mishra A, Karck M, Haverich A, Schmidtke J, et al. TGFBR1 and TGFBR2 mutations in patients with features of Marfan syndrome and Loeys-Dietz syndrome. Hum Mutat. 2006;27(8):770–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet. 2004;36(8):855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Disabella E, Grasso M, Marziliano N, Ansaldi S, Lucchelli C, Porcu E, et al. Two novel and one known mutation of the TGFBR2 gene in Marfan syndrome not associated with FBN1 gene defects. Eur J Hum Genet. 2006;14(1):34–8.

    CAS  PubMed  Google Scholar 

  13. Attias D, Stheneur C, Roy C, Collod-Beroud G, Detaint D, Faivre L, et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation. 2009;120(25):2541–9.

    Article  CAS  PubMed  Google Scholar 

  14. Pannu H. Mutations in transforming growth factor- receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation. 2005;112(4):513–20.

    Article  CAS  PubMed  Google Scholar 

  15. MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;27.

    Google Scholar 

  16. van der Linde D, van de Laar IMBH, Bertoli-Avella AM, Oldenburg RA, Bekkers JA, Mattace-Raso FUS, et al. Aggressive cardiovascular phenotype of aneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. JAC. Elsevier Inc. 2012;60(5):397–403 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22633655&retmode=ref&cmd=prlinks.

    Google Scholar 

  17. van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011a;43(2):121–6.

    Article  PubMed  CAS  Google Scholar 

  18. van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011b;43(2):121–6.

    Article  PubMed  CAS  Google Scholar 

  19. Regalado ES, Guo D-C, Villamizar C, Avidan N, Gilchrist D, McGillivray B, et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circulation Research. 2011;109(6):680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. Nature Publishing Group. 2012 :1–7. Available from: http://dx.doi.org/10.1038/ng.2349

  21. Guo D-C, Hanna N, Regalado ES, Detaint D, Gong L, Varret M, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet. Nature Publishing Group. 2012:1–8.

    Google Scholar 

  22. Renard M, Callewaert B, Malfait F, Campens L, Sharif S, Del Campo M, et al. Thoracic aortic-aneurysm and dissection in association with significant mitral valve disease caused by mutations in TGFB2. Int J Cardiol. Elsevier Ireland Ltd. 2012;165(3):584–587. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23102774&retmode=ref&cmd=prlinks

  23. Rienhoff HY, Yeo C-Y, Morissette R, Khrebtukova I, Melnick J, Luo S, et al. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am J Med Genet A. 2013;3.

    Google Scholar 

  24. Morisaki, H. et al., Pathogenic Mutations Found in 3 Japanese Families with MFS/LDS-like disorder. Abstract presentation at the 9th International Research Symposium on Marfan Syndrome and Related Disorders, 2014. Paris.

    Google Scholar 

  25. Matyas, G., Naef, P. & Oexle, K., De Novo TGFB3 Mutation in a Patient With Overgrowth and Loeys-Dietz Syndrome Features. Abstract presentation at the 9th International Research Symposium on Marfan Syndrome and Related Disorders, 2014. Paris

    Google Scholar 

  26. Milewicz DM, Ostergaard JR, Ala-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A. 2010;152A(10):2437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Munot P, Saunders DE, Milewicz DM, Regalado ES, Ostergaard JR, Braun KP, et al. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain. 2012;135(Pt 8):2506–14.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meuwissen MEC, Lequin MH, Bindels-de Heus K, Bruggenwirth HT, Knapen MFCM, Dalinghaus M, et al. ACTA2 mutation with childhood cardiovascular, autonomic and brain anomalies and severe outcome. Am J Med Genet A. 2013;161A(6):1376–80.

    Article  PubMed  CAS  Google Scholar 

  29. Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39(12):1488–93.

    Article  CAS  PubMed  Google Scholar 

  30. Renard M, Callewaert B, Baetens M, Campens L, Macdermot K, Fryns J-P, et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD. Int J Cardiol. 2011;165(2):314–21 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21937134&retmode=ref&cmd=prlinks.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang L, Guo D-C, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87(5):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo D-C, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ, et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet. 2013;93(2):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu L, Vranckx R, van Kien PK, Lalande A, Boisset N, Mathieu F, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006;38(3):343–9.

    Article  CAS  PubMed  Google Scholar 

  34. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Human Molecular Genetics. 2007;16(20):2453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marfan AB. Un cas de déformation congénitale des quatres membres, plus prononcée aux extrémités, caractérisée par l“allongement des avec un certain degré d”amincissement. Bull mem Soc Med Hop Paris. 1896;13:220–6.

    Google Scholar 

  36. McKusick VA. Heritable disorders of connective tissue. Mosby CA, editor. St Louis; 1956.

    Google Scholar 

  37. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart. 2008;95(3):173–5.

    Article  PubMed  Google Scholar 

  38. Silverman DI, Burton KJ, Gray J, Bosner MS, Kouchoukos NT, Roman MJ, et al. Life expectancy in the Marfan syndrome. AJC. 1995;75(2):157–60.

    Article  CAS  Google Scholar 

  39. Braverman AC, Harris KM, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 7: aortic diseases, including Marfan Syndrome: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015.

    Google Scholar 

  40. Jondeau G, Detaint D, Tubach F, Arnoult F, Milleron O, Raoux F, et al. Aortic event rate in the Marfan population: a cohort study. Circulation. 2012;125(2):226–32.

    Article  PubMed  Google Scholar 

  41. Meijboom LJ. Pregnancy and aortic root growth in the Marfan syndrome: a prospective study. European Heart Journal. 2005;26(9):914–20.

    Article  PubMed  Google Scholar 

  42. Donnelly RT, Pinto NM, Kocolas I, Yetman AT. The immediate and long-term impactof pregnancy on aortic growth rate and mortality in women with Marfan Syndrome. JAC. Elsevier Inc. 2012;60(3):224–9.

    Google Scholar 

  43. Teixido-Tura G, Franken R, Galuppo V, Gutiérrez García-Moreno L, Borregan M, Mulder BJM, et al. Heterogeneity of aortic disease severity in patients with Loeys-Dietz syndrome. Heart. 2016.

    Google Scholar 

  44. Byers PH. Ehlers-Danlos syndrome: recent advances and current understanding of the clinical and genetic heterogeneity. J Invest Dermatol. 1994;103(5 Suppl):47S–52S.

    Article  CAS  PubMed  Google Scholar 

  45. Oderich GS, Panneton JM, Bower TC, Lindor NM, Cherry KJ, Noel AA, et al. The spectrum, management and clinical outcome of Ehlers-Danlos syndrome type IV: a 30-year experience. YMVA. 2005;42(1):98–106.

    Google Scholar 

  46. Murray ML, Pepin M, Peterson S, Byers PH. Pregnancy-related deaths and complications in women with vascular Ehlers-Danlos syndrome. Genet Med. 2014;16(12):874–80.

    Article  PubMed  Google Scholar 

  47. Lemire BD, Buncic JR, Kennedy SJ, Dyack SJ, Teebi AS. Congenital mydriasis, patent ductus arteriosus, and congenital cystic lung disease: new syndromic spectrum? Am J Med Genet A. 2004;131(3):318–9.

    Article  PubMed  Google Scholar 

  48. Adès LC, Davies R, Haan EA, Holman KJ, Watson KC, Sreetharan D, et al. Aortic dissection, patent ductus arteriosus, iris hypoplasia and brachytelephalangy in a male adolescent. Clin Dysmorphol. 1999;8(4):269–76.

    PubMed  Google Scholar 

  49. Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005;111(6):816–28.

    Article  PubMed  Google Scholar 

  50. Pyeritz RE. Heritable thoracic aortic disorders. Curr Opin Cardiol. 2014;29(1):97–102.

    Article  PubMed  Google Scholar 

  51. Albornoz G, Coady M, Roberts M, Davies R, Tranquilli M, Rizzo J, et al. Familial thoracic aortic aneurysms and dissections—Incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82(4):1400–5.

    Article  PubMed  Google Scholar 

  52. Coady MA, Rizzo JA, Goldstein LJ, Elefteriades JA. Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol Clin. 1999;17(4):615 –35–vii.

    Article  CAS  PubMed  Google Scholar 

  53. Wooderchak-Donahue W, VanSant-Webb C, Tvrdik T, Plant P, Lewis T, Stocks J, et al. Clinical utility of a next generation sequencing panel assay for Marfan and Marfan-like syndromes featuring aortopathy. Am J Med Genet A. 2015;5.

    Google Scholar 

  54. Rozendaal L, Groenink M, Naeff MS, Hennekam RC, Hart AA, van der Wall EE, et al. Marfan syndrome in children and adolescents: an adjusted nomogram for screening aortic root dilatation. Heart. 1998;79(1):69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Groenink M, Rozendaal L, Naeff MS, Hennekam RC, Hart AA, van der Wall EE, et al. Marfan syndrome in children and adolescents: predictive and prognostic value of aortic root growth for screening for aortic complications. Heart. 1998;80(2):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Radonic T, de Witte P, Groenink M, de Bruin-Bon RACM, Timmermans J, Scholte AJH, et al. Critical appraisal of the revised Ghent criteria for diagnosis of Marfan syndrome. Clin Genet. 2011;80(4):346–53.

    Article  CAS  PubMed  Google Scholar 

  57. Finkbohner R, Johnston D, Crawford ES, Coselli J, Milewicz DM. Marfan syndrome. Long-term survival and complications after aortic aneurysm repair. Circulation. 1995;91(3):728–33.

    Article  CAS  PubMed  Google Scholar 

  58. Engelfriet PM. Beyond the root: dilatation of the distal aorta in Marfan’s syndrome. Heart. 2006;92(9):1238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mulder BJM. The distal aorta in the Marfan syndrome. Neth Heart J. 2008;16(11):382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hartog den AW, Franken R, Zwinderman AH, Timmermans J, Scholte AJ, van den Berg MP, et al. The risk for type B aortic dissection in Marfan syndrome. JAC. 2015;65(3):246–54.

    Google Scholar 

  61. Nollen GJ, Groenink M, Tijssen JGP, Van Der Wall EE, Mulder BJM. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. European Heart Journal. 2004;25(13):1146–52.

    Article  PubMed  Google Scholar 

  62. Franken R, Morabit el A, de Waard V, Timmermans J, Scholte AJ, van den Berg MP, et al. Increased aortic tortuosity indicates a more severe aortic phenotype in adults with Marfan syndrome. Int J Cardiol. 2015;194:7–12.

    Article  PubMed  Google Scholar 

  63. Schoenhoff FS, Jungi S, Czerny M, Roost E, Reineke D, Mátyás G, et al. Acute aortic dissection determines the fate of initially untreated aortic segments in Marfan syndrome. Circulation. 2013;127(15):1569–75.

    Article  PubMed  Google Scholar 

  64. Lemaire SA, la Cruz de KI, Coselli JS. The Thoracoabdominal Aorta in Marfan Syndrome. London: Springer London; 2014. pp. 423–434.

    Google Scholar 

  65. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121:e266–369.

    Article  PubMed  Google Scholar 

  66. Sheikhzadeh S, De Backer J, Gorgan N, Rybczynski M, Hillebrand M, Schüler H, et al. The main pulmonary artery in adults: a controlled multicenter study with assessment of echocardiographic reference values, and the frequency of dilatation and aneurysm in Marfan syndrome. Orphanet J Rare Dis. 2014a;9(1):203.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nollen GJ, van Schijndel KE, Timmermans J, Groenink M, Barentsz JO, van der Wall EE, et al. Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion. Heart. 2002;87(5):470–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Backer J, Loeys B, Devos D, Dietz H, de Sutter J, de Paepe A. A critical analysis of minor cardiovascular criteria in the diagnostic evaluation of patients with Marfan syndrome. Genet Med. 2006a;8(7):401–8 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16845272&retmode=ref&cmd=prlinks.

    Article  PubMed  Google Scholar 

  69. de Backer JF, Devos D, Segers P, Matthys D, François K, Gillebert TC, et al. Primary impairment of left ventricular function in Marfan syndrome☆. Int J Cardiol. 2006b;112(3):353–8 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16316698&retmode=ref&cmd=prlinks.

    Article  PubMed  Google Scholar 

  70. Meijboom LJ, Timmermans J, van Tintelen JP, Nollen GJ, De Backer J, van den Berg MP, et al. Evaluation of left ventricular dimensions and function in Marfan’s syndrome without significant valvular regurgitation. Am J Cardiol. 2005a;95(6):795–7.

    Article  PubMed  Google Scholar 

  71. Campens L, Renard M, Trachet B, Segers P, Muiño Mosquera L, de Sutter J, et al. Intrinsic cardiomyopathy in Marfan syndrome: results from in-vivo and ex-vivo studies of the Fbn1(C1039G/+) model and longitudinal findings in humans. Pediatr Res. 2015b;78(3):256–63.

    Article  PubMed  Google Scholar 

  72. van Dijk N, Boer MC, Mulder BJM, van Montfrans GA, Wieling W. Is fatigue in Marfan syndrome related to orthostatic intolerance? Clin Auton Res. 2008;18(4):187–93.

    Article  PubMed  Google Scholar 

  73. Maumenee IH. The eye in the Marfan syndrome. Trans Am Ophthalmol Soc. 1981;79:684–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dotrelova D, Karel I, Clupkova E. Retinal detachment in Marfan’s syndrome. Characteristics and surgical results. Retina. 1997;17(5):390–6.

    Article  CAS  PubMed  Google Scholar 

  75. Maumenee IH. The eye in the Marfan syndrome. Birth Defects Orig Artic Ser. 1982;18(6):515–24.

    CAS  PubMed  Google Scholar 

  76. Wood JR, Bellamy D, Child AH, Citron KM. Pulmonary disease in patients with Marfan syndrome. Thorax. 1984;39(10):780–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rybczynski M, Koschyk D, Karmeier A, Gessler N, Sheikhzadeh S, Bernhardt AMJ, et al. Frequency of sleep apnea in adults with the Marfan syndrome. AJC. Elsevier Inc; 2010;105(12):1836–1841. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20538140&retmode=ref&cmd=prlinks

  78. Kohler M, Pitcher A, Blair E, Risby P, Senn O, Forfar C, et al. The impact of obstructive sleep apnea on aortic disease in Marfan’s syndrome. Respiration. 2013;86(1):39–44.

    Article  PubMed  Google Scholar 

  79. Oosterhof T, Groenink M, Hulsmans FJ, Mulder BJ, van der Wall EE, Smit R, et al. Quantitative assessment of dural ectasia as a marker for Marfan syndrome. Radiology. 2001;220(2):514–8.

    Article  CAS  PubMed  Google Scholar 

  80. Villeirs GM, Van Tongerloo AJ, Verstraete KL, Kunnen MF, de Paepe AM. Widening of the spinal canal and dural ectasia in Marfan’s syndrome: assessment by CT. Neuroradiology. 1999;41(11):850–4.

    Article  CAS  PubMed  Google Scholar 

  81. Sheikhzadeh S, Brockstaedt L, Habermann CR, Sondermann C, Bannas P, Mir TS, et al. Dural ectasia in Loeys-Dietz syndrome: comprehensive study of 30 patients with a TGFBR1 or TGFBR2 mutation. Clin Genet. 2014b;86(6):545–51.

    Article  CAS  PubMed  Google Scholar 

  82. Foran JRH, Pyeritz RE, Dietz HC, Sponseller PD. Characterization of the symptoms associated with dural ectasia in the Marfan patient. Am J Med Genet A. 2005;134A(1):58–65.

    Article  PubMed  Google Scholar 

  83. Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, et al. Mutations in a TGF-β Ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015;65(13):1324–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Micha D, Guo D-C, Hilhorst-Hofstee Y, van Kooten F, Atmaja D, Overwater E, et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat 2015.

    Google Scholar 

  85. Gupta-Malhotra, M. et al. Aortic dilatation in children with systemic hypertension. Journal of the American Society of Hypertension : JASH. 2014; 8(4): 239–45.

    Google Scholar 

  86. Kono AK, Higashi M, Morisaki H, Morisaki T, Tsutsumi Y, Akutsu K, et al. High prevalence of vertebral artery tortuosity of Loeys-Dietz syndrome in comparison with Marfan syndrome. Jpn J Radiol. 2010;28(4):273–7.

    Article  CAS  PubMed  Google Scholar 

  87. Morris SA, Orbach DB, GEVA T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation. 2011;124(4):388–96.

    Article  PubMed  Google Scholar 

  88. Kuechler A, Altmüller J, Nürnberg P, Kotthoff S, Kubisch C, Borck G. Exome sequencing identifies a novel heterozygous TGFB3 mutation in a disorder overlapping with Marfan and Loeys-Dietz syndrome. Mol Cell Probes. 2015;29(5):330–4.

    Article  CAS  PubMed  Google Scholar 

  89. Eckman PM, Hsich E, Rodriguez ER, Gonzalez-Stawinski GV, Moran R, Taylor DO. Impaired systolic function in Loeys-Dietz syndrome: a novel cardiomyopathy? Circ Heart Fail. 2009;2(6):707–8.

    Article  PubMed  Google Scholar 

  90. van de Laar IMBH, van der Linde D, Oei EHG, Bos PK, Bessems JH, Bierma-Zeinstra SM, et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet. 2011c;49(1):47–57 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22167769&retmode=ref&cmd=prlinks.

    Article  Google Scholar 

  91. Wischmeijer A, Van Laer L, Tortora G, Bolar NA, Van Camp G, Fransen E, et al. Thoracic aortic aneurysm in infancy in aneurysms-osteoarthritis syndrome due to a novel SMAD3 mutation: further delineation of the phenotype. Am J Med Genet A 2013.

    Google Scholar 

  92. Hilhorst-Hofstee Y, Scholte AJHA, Rijlaarsdam MEB, van Haeringen A, Kroft LJ, Reijnierse M, et al. An unanticipated copy number variant of chromosome 15 disrupting SMAD3 reveals a three-generation family at serious risk for aortic dissection. Clin Genet. 2013;83(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  93. Fitzgerald-Butt SM, Klima J, Kelleher K, Chisolm D, McBride KL. Genetic knowledge and attitudes of parents of children with congenital heart defects. Am J Med Genet A 2014

    Google Scholar 

  94. Martens T, Van Herzeele I, De Ryck F, Renard M, de Paepe A, François K, et al. Multiple aneurysms in a patient with aneurysms-osteoarthritis syndrome. Ann Thorac Surg. Elsevier Inc; 2013;95(1):332–335. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23272854&retmode=ref&cmd=prlinks

  95. Aubart M, Gobert D, Aubart-Cohen F, Detaint D, Hanna N, d’Indya H, et al. Early-onset osteoarthritis, Charcot-Marie-Tooth like neuropathy, autoimmune features, multiple arterial aneurysms and dissections: an unrecognized and life threatening condition. PLoS ONE. 2014;9(5):e96387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Panesi P, Foffa I, Sabina S, Ait Alì L, Andreassi MG. Novel TGFBR2 and known missense SMAD3 mutations: two case reports of thoracic aortic aneurysms. Ann Thorac Surg. 2015;99(1):303–5.

    Article  PubMed  Google Scholar 

  97. Berthet E, Hanna N, Giraud C, Soubrier M. A case of rheumatoid arthritis associated with SMAD3 gene mutation: a new clinical entity? J Rheumatol. 2015;42(3):556.

    Article  PubMed  Google Scholar 

  98. Grahame R, Pyeritz RE. The Marfan syndrome: joint and skin manifestations are prevalent and correlated. Br J Rheumatol. 1995;34(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  99. Law C, Bunyan D, Castle B, Day L, Simpson I, Westwood G, et al. Clinical features in a family with an R460H mutation in transforming growth factor beta receptor 2 gene. J Med Genet. 2006;43(12):908–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Frischmeyer-Guerrerio PA, Guerrerio AL, Oswald G, Chichester K, Myers L, Halushka MK, et al. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci Transl Med. 2013;5(195):195ra94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Sheikhzadeh S, Sondermann C, Rybczynski M, Habermann CR, Brockstaedt L, Keyser B, et al. Comprehensive analysis of dural ectasia in 150 patients with a causative FBN1mutation. Clin Genet. 2013:n/a–n/a.

    Google Scholar 

  102. Beighton P, de Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet. 1998;77:31–7.

    Article  CAS  PubMed  Google Scholar 

  103. Bergqvist D, Björck M, Wanhainen A. Treatment of vascular Ehlers-Danlos syndrome: a systematic review. Ann Surg. 2013;258(2):257–61.

    Article  PubMed  Google Scholar 

  104. Watanabe S, Ishimitsu T, Inoue K, Tomizawa T, Noguchi Y, Sugishita Y, et al. Type IV Ehlers-Danlos syndrome associated with mitral valve prolapse: a case report. J Cardiol Suppl. 1988;18:97–105 discussion106.

    CAS  PubMed  Google Scholar 

  105. Jaffe AS, Geltman EM, Rodey GE, Uitto J. Mitral valve prolapse: a consistent manifestation of type IV Ehlers-Danlos syndrome. The pathogenetic role of the abnormal production of type III collagen. Circulation. 1981;64(1):121–5.

    Article  CAS  PubMed  Google Scholar 

  106. Dolan AL, Mishra MB, Chambers JB, Grahame R. Clinical and echocardiographic survey of the Ehlers-Danlos syndrome. Br J Rheumatol. 1997;36(4):459–62.

    Article  CAS  PubMed  Google Scholar 

  107. Zilocchi M, Macedo TA, Oderich GS, Vrtiska TJ, Biondetti PR, Stanson AW. Vascular Ehlers-Danlos syndrome: imaging findings. AJR Am J Roentgenol. 2007;189(3):712–9.

    Article  PubMed  Google Scholar 

  108. Heidbreder AE, Ringelstein EB, Dittrich R, Nabavi D, Metze D, Kuhlenbäumer G. Assessment of skin extensibility and joint hypermobility in patients with spontaneous cervical artery dissection and Ehlers-Danlos syndrome. J Clin Neurosci. 2008;15(6):650–3.

    Article  CAS  PubMed  Google Scholar 

  109. Lind J, Wallenburg HCS. Pregnancy and the Ehlers-Danlos syndrome: a retrospective study in a Dutch population. Acta Obstet Gynecol Scand. 2002;81(4):293–300.

    Article  PubMed  Google Scholar 

  110. Khan N, Schinzel A, Shuknecht B, Baumann F, Ostergaard JR, Yonekawa Y. Moyamoya angiopathy with dolichoectatic internal carotid arteries, patent ductus arteriosus and pupillary dysfunction: a new genetic syndrome? Eur Neurol. 2004;51(2):72–7.

    Article  PubMed  Google Scholar 

  111. Roulez FMJ, Faes F, Delbeke P, Van Bogaert P, Rodesch G, De Zaeytijd J, et al. Congenital fixed dilated pupils due to ACTA2- multisystemic smooth muscle dysfunction syndrome. J Neuroophthalmol. 2014;34(2):137–43.

    Article  PubMed  Google Scholar 

  112. Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. YMVA. 1997;25(3):506–11.

    CAS  Google Scholar 

  113. Regalado ES, Guo D, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic Disease Presentation and Outcome Associated with ACTA2 Mutations. Circ Cardiovas Genet. 2015a;8(3):457–64.

    Article  CAS  Google Scholar 

  114. van Kien PK. Mapping of Familial Thoracic Aortic Aneurysm/Dissection With Patent Ductus Arteriosus to 16p12.2-p13.13. Circulation. 2005;112(2):200–6 Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.104.506345.

    Article  Google Scholar 

  115. Regalado ES, Guo D-C, Santos-Cortez RLP, Hostetler E, Bensend TA, Pannu H, et al. Pathogenic FBN1 variants in familial thoracic aortic aneurysms and dissections. Clin Genet. 2015b:n/a–n/a. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26621581&retmode=ref&cmd=prlinks

  116. Milewicz DM, Chen H, Park ES, Petty EM, Zaghi H, Shashidhar G, et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. AJC. 1998;82(4):474–9.

    Article  CAS  Google Scholar 

  117. Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL, et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med. 1999;341(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  118. Guo D-C, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B, et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet. 2015;96(1):170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. JAC. 2004;44(1):138–43.

    Google Scholar 

  120. McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134A(2):180–6.

    Article  PubMed  Google Scholar 

  121. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.

    Article  CAS  PubMed  Google Scholar 

  122. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134(2):290–6.

    Article  CAS  PubMed  Google Scholar 

  123. Kerstjens-Frederikse WS, van de Laar IMBH, Vos YJ, Verhagen JMA, Berger RMF, Lichtenbelt KD, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med 2016

    Google Scholar 

  124. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.

    Article  CAS  PubMed  Google Scholar 

  125. Carmignac V, Thevenon J, Adès L, Callewaert B, Julia S, Thauvin-Robinet C, et al. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome. Am J Hum Genet. 2012;91(5):950–7 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23103230&retmode=ref&cmd=prlinks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, et al. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44(11):1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Coucke PJ. Homozygosity mapping of a gene for arterial tortuosity syndrome to chromosome 20q13. J Med Genet. 2003;40(10):747–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E, et al. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat. 2011;32(4):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Renard M, Holm T, Veith R, Callewaert BL. s LCAE, Baspinar O, et al. Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet. 2010;18(8):895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rippe M, De Backer J, Kutsche K, Mosquera LM, Schüler H, Rybczynski M, et al. Mitral valve prolapse syndrome and MASS phenotype: stability of aortic dilatation but progression of mitral valve prolapse. IJCHA. The Authors. 2016;10:39–46.

    Google Scholar 

  131. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7.

    Article  CAS  PubMed  Google Scholar 

  132. Callewaert BL, Willaert A, Kerstjens-Frederikse WS, de Backer J, Devriendt K, Albrecht B, et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  133. Kosaki K, Takahashi D, Udaka T, Kosaki R, Matsumoto M, Ibe S, et al. Molecular pathology of Shprintzen-Goldberg syndrome. Am J Med Genet A. 2006;140(1):104–8 authorreply109–10.

    Article  PubMed  CAS  Google Scholar 

  134. Gupta PA, Wallis DD, Chin TO, Northrup H, Tran-Fadulu VT, Towbin JA, et al. FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly. J Med Genet. 2004;41(5):e56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nishimura A, Sakai H, Ikegawa S, Kitoh H, Haga N, Ishikiriyama S, et al. FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly. Am J Med Genet A. 2007;143A(7):694–8.

    Article  CAS  PubMed  Google Scholar 

  136. Kruger WD, Wang L, Jhee KH, Singh RH, Elsas LJ. Cystathionine beta-synthase deficiency in Georgia (USA): correlation of clinical and biochemical phenotype with genotype. Hum Mutat. 2003;22(6):434–41.

    Article  CAS  PubMed  Google Scholar 

  137. De Lucca M, Casique L. Characterization of cystathionine beta-synthase gene mutations in homocystinuric Venezuelan patients: identification of one novel mutation in exon 6. Mol Genet Metab. 2004;81(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  138. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330(19):1335–41.

    Article  CAS  PubMed  Google Scholar 

  139. Engelfriet P, Mulder B. Is there benefit of beta-blocking agents in the treatment of patients with the Marfan syndrome? Int J Cardiol. 2007;114(3):300–2.

    Article  PubMed  Google Scholar 

  140. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chiu H-H, Wu M-H, Wang J-K, Lu C-W, Chiu S-N, Chen C-A, et al. Losartan added to β-blockade therapy for aortic root dilation in Marfan syndrome: a randomized, open-label pilot study. Mayo Clinic Proceedings. 2013;88(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  142. Franken R, Mulder BJM. Aortic disease: losartan versus atenolol in the Marfan aorta-how to treat? Nat Rev Cardiol. 2015.

    Google Scholar 

  143. Groenink M, Hartog den AW, Franken R, Radonic T, de Waard V, Timmermans J, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J 2013.

    Google Scholar 

  144. Milleron O, Arnoult F, Ropers J, Aegerter P, Detaint D, Delorme G, et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2015;36(32):2160–6.

    Article  PubMed  Google Scholar 

  145. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371(22):2061–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Forteza A, Evangelista A, Sánchez V, Teixido-Tura G, Sanz P, Gutiérrez L, et al. Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur Heart J. 2015.

    Google Scholar 

  147. De Backer J. Marfan and Sartans: time to wake up! European He art Journal. 2015.

    Google Scholar 

  148. Erbel, R. et al. 2014. ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). European Heart Journal. 2014;35(41): 2873–2926.

    Google Scholar 

  149. Meijboom LJ, Timmermans J, Zwinderman AH, Engelfriet PM, Mulder BJM. Aortic root growth in men and women with the Marfan’s syndrome. Am J Cardiol. 2005b;96(10):1441–4.

    Article  PubMed  Google Scholar 

  150. Davies RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81(1):169–77.

    Article  PubMed  Google Scholar 

  151. Gott VL, Greene PS, Alejo DE, Cameron DE, Naftel DC, Miller DC, et al. Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med. 1999;340(17):1307–13.

    Article  CAS  PubMed  Google Scholar 

  152. David TE, Feindel CM, David CM, Manlhiot C. A quarter of a century of experience with aortic valve-sparing operations. J Thorac Cardiovasc Surg. 2014;148(3):872 –9–discussion879–80.

    Article  PubMed  Google Scholar 

  153. Lederle FA, Freischlag JA, Kyriakides TC, Matsumura JS, Padberg FT, Kohler TR, et al. Long-term comparison of endovascular and open repair of abdominal aortic aneurysm. N Engl J Med. 2012;367(21):1988–97.

    Article  CAS  PubMed  Google Scholar 

  154. Preventza O, Mohammed S, Cheong BY, Gonzalez L, Ouzounian M, Livesay JJ, et al. Endovascular therapy in patients with genetically triggered thoracic aortic disease: applications and short- and mid-term outcomes. Eur J Cardiothorac Surg. 2014;46(2):248 –53–discussion253.

    Article  PubMed  Google Scholar 

  155. Pacini D, Parolari A, Berretta P, Di Bartolomeo R, Alamanni F, Bavaria J. Endovascular treatment for type B dissection in Marfan syndrome: is it worthwhile? Ann Thorac Surg. 2013;95(2):737–49.

    Article  PubMed  Google Scholar 

  156. Nordon IM, Hinchliffe RJ, Holt PJ, Morgan R, Jahangiri M, Loftus IM, et al. Endovascular management of chronic aortic dissection in patients with Marfan syndrome. J Vasc Surg. 2009;50(5):987–91.

    Article  PubMed  Google Scholar 

  157. Treasure, T., Takkenberg, J.J.M. & Pepper, J. Surgical management of aortic root disease in Marfan syndrome and other congenital disorders associated with aortic root aneurysms. Heart (British Cardiac Society). 2014;100(20):1571–76.

    Google Scholar 

  158. Meijboom LJ, Groenink M, van der Wall EE, Romkes H, Stoker J, Mulder BJ. Aortic root asymmetry in Marfan patients; evaluation by magnetic resonance imaging and comparison with standard echocardiography. Int J Card Imaging. 2000;16(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  159. Nollen GJ. Aortic pressure-area relation in Marfan patients with and without blocking agents: a new non-invasive approach. Heart. 2004;90(3):314–318. Available from: http://heart.bmj.com/cgi/doi/10.1136/hrt.2003.010702

    Google Scholar 

  160. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148(1):e1–e132.

    Article  PubMed  Google Scholar 

  161. Meijboom LJ, Drenthen W, Pieper PG, Groenink M, van der Post JAM, Timmermans J, et al. Obstetric complications in Marfan syndrome. Int J Cardiol. 2006;110(1):53–9.

    Article  PubMed  Google Scholar 

  162. Rossiter JP, Repke JT, Morales AJ, Murphy EA, Pyeritz RE. A prospective longitudinal evaluation of pregnancy in the Marfan syndrome. Am J Obstet Gynecol. 1995;173(5):1599–606.

    Article  CAS  PubMed  Google Scholar 

  163. Ersbøll AS, Hedegaard M, Sondergaard L, Ersbøll M, Johansen M. Treatment with oral beta-blockers during pregnancy complicated by maternal heart disease increases the risk of fetal growth restriction. BJOG: Int J Obstet Gy. 2014;121(5):618–26.

    Article  Google Scholar 

  164. Dolan P, Sisko F, Riley E. Anesthetic considerations for Ehlers-Danlos syndrome. Anesthesiology. 1980;52(3):266–9.

    Article  CAS  PubMed  Google Scholar 

  165. Brooke BS, Arnaoutakis G, McDonnell NB, Black JH. Contemporary management of vascular complications associated with Ehlers-Danlos syndrome. YMVA. Elsevier Inc. 2010;51(1):131–9.

    Google Scholar 

  166. Ong K-T, Perdu J, De Backer J, Bozec E, Collignon P, Emmerich J, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers-Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet. 2010;376(9751):1476–84.

    Article  CAS  PubMed  Google Scholar 

  167. Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, Therrien J, et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol. 2014;30:577–89.

    Article  PubMed  Google Scholar 

  168. Michelena HI, Desjardins VA, Avierinos J-F, Russo A, Nkomo VT, Sundt TM, et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation. 2008;117(21):2776–84.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Eleid MF, Forde I, Edwards WD, Maleszewski JJ, Suri RM, Schaff HV, et al. Type A aortic dissection in patients with bicuspid aortic valves: clinical and pathological comparison with tricuspid aortic valves. Heart. 2013;99(22):1668–74.

    Article  PubMed  Google Scholar 

  170. Detaint D, Michelena HI, Nkomo VT, Vahanian A, Jondeau G, Sarano ME. Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart. 2014;100(2):126–34.

    Article  PubMed  Google Scholar 

  171. Loeys B, de Backer J, van Acker P, Wettinck K, Pals G, Nuytinck L, et al. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum Mutat. 2004;24(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  172. Proost, D. et al., Performant Mutation Identification Using Targeted Next-Generation Sequencing of 14 Thoracic Aortic Aneurysm Genes. Human Mutation. 2015;36(8): 808–14.

    Google Scholar 

  173. Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH, et al. Routine Genetic Testing for Thoracic Aortic Aneurysm and Dissection in a Clinical Setting. Ann Thorac Surg. 2015;100(5):1604–11.

    Article  PubMed  Google Scholar 

  174. Arslan-Kirchner M, Arbustini E, Boileau C, Charron P, Child AH, Collod-Beroud G, et al. Clinical utility gene card for: hereditary thoracic aortic aneurysm and dissection including next-generation sequencing-based approaches. Eur J Hum Genet. 2015;28.

    Google Scholar 

  175. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen--the Clinical Genome Resource. N Engl J Med. 2015;372(23):2235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics. 1993;17(2):476–84.

    Article  CAS  PubMed  Google Scholar 

  177. Biery NJ, Eldadah ZA, Moore CS, Stetten G, Spencer F, Dietz HC. Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics. 1999;56(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  178. Sengle G. Sakai LY. The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation? Matrix biology. journal of the International Society for Matrix Biology. 2015;47:3–12.

    Google Scholar 

  179. Hubmacher D, Tiedemann K, Reinhardt DP. Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol. 2006;75:93–123.

    Article  CAS  PubMed  Google Scholar 

  180. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest. 2004;114(2):172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA. 1999;96(7):3819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC. Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res. 2001;88(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  183. Massagué J. The TGF-beta family of growth and differentiation factors. Cell. 1987;49(4):437–8.

    Article  PubMed  Google Scholar 

  184. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  185. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, et al. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem. 2003;278(4):2750–7.

    Article  CAS  PubMed  Google Scholar 

  186. Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol. 1995;131(2):539–49.

    Article  CAS  PubMed  Google Scholar 

  187. Saharinen J, Hyytiäinen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding proteins (LTBPs)--structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev. 1999;10(2):99–117.

    Article  CAS  PubMed  Google Scholar 

  188. Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, et al. In vivo studies of mutant fibrillin-1 microfibrils. J Biol Chem. 2010;285(32):24943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dietz H. A healthy tension in translational research. J Clin Invest. 2014;124(4):1425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jeremy RW, Robertson E, Lu Y, Hambly BD. Perturbations of mechanotransduction and aneurysm formation in heritable aortopathies. Int J Cardiol. 2013;169(1):7–16.

    Article  PubMed  Google Scholar 

  191. Humphrey JD, Milewicz DM, Tellides G, Schwartz MA. Cell biology. Dysfunctional mechanosensing in aneurysms. Science. 2014;344(6183):477–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Loeys B, Nuytinck L, Delvaux I, De Bie S, de Paepe A. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med. 2001;161(20):2447–54.

    Article  CAS  PubMed  Google Scholar 

  193. de Backer J, Nollen GJ, Devos D, Pals G, Coucke P, Verstraete K, et al. Variability of aortic stiffness is not associated with the fibrillin 1 genotype in patients with Marfan’s syndrome. Heart. 2006c;92(7):977–8.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Nijbroek G, Sood S, McIntosh I, Francomano CA, Bull E, Pereira L, et al. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am J Hum Genet. 1995;57(1):8–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Tynan K, Comeau K, Pearson M, Wilgenbus P, Levitt D, Gasner C, et al. Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations, including two in 8-cysteine domains. Hum Mol Genet. 1993;2(11):1813–21.

    Article  CAS  PubMed  Google Scholar 

  196. Dietz HC, McIntosh I, Sakai LY, Corson GM, Chalberg SC, Pyeritz RE, et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993;17(2):468–75.

    Article  CAS  PubMed  Google Scholar 

  197. Faivre L, Collod-Beroud G, Callewaert B, Child A, Binquet C, Gautier E, et al. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation. Eur J Hum Genet. 2009b;17(4):491–501.

    Article  CAS  PubMed  Google Scholar 

  198. Franken, R. et al., 2016. Genotype impacts survival in Marfan syndrome. European Heart Journal. Jan 18.

    Google Scholar 

  199. Schrijver I, Liu W, Brenn T, Furthmayr H, Francke U. Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Am J Hum Genet. 1999;65(4):1007–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Schrijver I, Liu W, Odom R, Brenn T, Oefner P, Furthmayr H, et al. Premature termination mutations in FBN1: distinct effects on differential allelic expression and on protein and clinical phenotypes. Am J Hum Genet. 2002;71(2):223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Comeglio P, Evans AL, Brice G, Cooling RJ, Child AH. Identification of FBN1 gene mutations in patients with ectopia lentis and marfanoid habitus. Br J Ophthalmol. 2002;86(12):1359–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am J Hum Genet. 2007;81(3):454–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Comeglio P, Johnson P, Arno G, Brice G, Evans A, Aragon-Martin J, et al. The importance of mutation detection in Marfan syndrome and Marfan-related disorders: report of 193 FBN1 mutations. Hum Mutat. 2007;28(9):928.

    Article  PubMed  Google Scholar 

  204. Baudhuin LM, Kotzer KE, Lagerstedt SA. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events. Genet Med. 2015;17(3):177–87.

    Article  CAS  PubMed  Google Scholar 

  205. Morissette R, Schoenhoff F, Xu Z, Shilane DA, Griswold BF, Chen W, et al. Transforming Growth Factor-β (TGF-β) and Inflammation in Vascular (Type IV) Ehlers Danlos Syndrome. Cardiovascular Genetics: Circulation; 2014.

    Google Scholar 

  206. Frank M, Albuisson J, Ranque B, Golmard L, Mazzella J-M, Bal-Theoleyre L, et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet. 2015;11.

    Google Scholar 

  207. Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014;16(12):881–8.

    Article  CAS  PubMed  Google Scholar 

  208. Tromp G, Kuivaniemi H, Stolle C, Pope FM, Prockop DJ. Single base mutation in the type III procollagen gene that converts the codon for glycine 883 to aspartate in a mild variant of Ehlers-Danlos syndrome IV. J Biol Chem. 1989;264(32):19313–7.

    CAS  PubMed  Google Scholar 

  209. Rodriguez-Vita J, Angiotensin II. Activates the Smad Pathway in Vascular Smooth Muscle Cells by a Transforming Growth Factor- -Independent Mechanism. Circulation. 2005;111(19):2509–17.

    Article  CAS  PubMed  Google Scholar 

  210. Guo X, Chen S-Y. Transforming growth factor-β and smooth muscle differentiation. World J Biol Chem. 2012;3(3):41–52.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Wynne BM, Chiao C-W, Webb RC. Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1. J Am Soc Hypertens. 2009;3(2):84–95.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Inamoto S, Kwartler CS, Lafont AL, Liang YY, Fadulu VT, Duraisamy S, et al. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res. 2010;88(3):520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, et al. Fibrillin assembly requires fibronectin. Mol Biol Cell. 2009;20(3):846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pepin MG, Murray ML, Byers PH. Vascular Ehlers-Danlos Syndrome. In: RA P, MP A, HH A, editors. Gene Reviews. 1999 ed. Seattle: University of Washington, Seattle; pp. http://www.ncbi.nlm.nih.gov–books–NBK1494–.

    Google Scholar 

  216. Coron F, Rousseau T, Jondeau G, Gautier E, Binquet C, Gouya L, et al. What do French patients and geneticists think about prenatal and preimplantation diagnoses in Marfan syndrome? Prenat Diagn. 2012;32(13):1318–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. M. Mulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mulder, B.J.M., van de Laar, I.M.B.H., De Backer, J. (2016). Heritable Thoracic Aortic Disorders. In: Baars, H., Doevendans, P., Houweling, A., van Tintelen, J. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-44203-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44203-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44202-0

  • Online ISBN: 978-3-319-44203-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics