Skip to main content

Fully Convolutional Boundary Regression for Retina OCT Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

A major goal of analyzing retinal optical coherence tomography (OCT) images is retinal layer segmentation. Accurate automated algorithms for segmenting smooth continuous layer surfaces, with correct hierarchy (topology) are desired for monitoring disease progression. State-of-the-art methods use a trained classifier to label each pixel into background, layer, or surface pixels. The final step of extracting the desired smooth surfaces with correct topology are mostly performed by graph methods (e.g. shortest path, graph cut). However, manually building a graph with varying constraints by retinal region and pathology and solving the minimization with specialized algorithms will degrade the flexibility and time efficiency of the whole framework. In this paper, we directly model the distribution of surface positions using a deep network with a fully differentiable soft argmax to obtain smooth, continuous surfaces in a single feed forward operation. A special topology module is used in the deep network both in the training and testing stages to guarantee the surface topology. An extra deep network output branch is also used for predicting lesion and layers in a pixel-wise labeling scheme. The proposed method was evaluated on two publicly available data sets of healthy controls, subjects with multiple sclerosis, and diabetic macular edema; it achieves state-of-the art sub-pixel results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Cohen, A., et al.: Retinal layers segmentation using fully convolutional network in OCT images. In: RSIP Vision (2017)

    Google Scholar 

  2. Carass, A., et al.: Multiple-object geometric deformable model for segmentation of macular OCT. Biomed. Opt. Express 5(4), 1062–1074 (2014)

    Article  Google Scholar 

  3. Chiu, S.J., et al.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010)

    Article  Google Scholar 

  4. Chiu, S.J., et al.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Express 6(4), 1172–1194 (2015)

    Article  Google Scholar 

  5. Fang, L., et al.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5), 2732–2744 (2017)

    Article  Google Scholar 

  6. Garvin, M.K., et al.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imag. 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  7. He, Y., et al.: Towards topological correct segmentation of macular OCT from cascaded FCNs. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_23

    Chapter  Google Scholar 

  8. He, Y., et al.: Retinal layer parcellation of optical coherence tomography images: data resource for multiple sclerosis and healthy controls. Data Brief 22, 601–604 (2018)

    Article  Google Scholar 

  9. He, Y., et al.: Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks. arXiv preprint arXiv:1803.05120 (2018)

  10. Honari, S., et al.: Improving landmark localization with semi-supervised learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  11. Karri, S., et al.: Learning layer-specific edges for segmenting retinal layers with large deformations. Biomed. Opt. Express 7(7), 2888–2901 (2016)

    Article  Google Scholar 

  12. Kugelman, J., et al.: Automatic segmentation of oct retinal boundaries using recurrent neural networks and graph search. Biomed. Opt. Express 9(11), 5759–5777 (2018)

    Article  Google Scholar 

  13. Lang, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)

    Article  Google Scholar 

  14. Lee, S., et al.: Atlas-based shape analysis and classification of retinal optical coherence tomography images using the functional shape (fshape) framework. Med. Image Anal. 35, 570–581 (2017)

    Article  Google Scholar 

  15. Medeiros, F.A., et al.: Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest. Ophthalmol. Vis. Sci. 50(12), 5741–5748 (2009)

    Article  Google Scholar 

  16. Rathke, F., Desana, M., Schnörr, C.: Locally adaptive probabilistic models for global segmentation of pathological OCT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 177–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_21

    Chapter  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Roy, A.G., et al.: Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  19. Tian, J., et al.: Performance evaluation of automated segmentation software on optical coherence tomography volume data. J. Biophotonics 9(5), 478–489 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH/NEI under grant R01-EY024655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y. et al. (2019). Fully Convolutional Boundary Regression for Retina OCT Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics