Skip to main content

Interactions Between Kisspeptins and Neurokinin B

  • Chapter
  • First Online:
Kisspeptin Signaling in Reproductive Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 784))

Abstract

Reproductive function is tightly regulated by an intricate network of central and peripheral factors; however, the precise mechanism triggering critical reproductive events, such as puberty onset, remains largely unknown. Recently, the neuropeptides kisspeptin (encoded by Kiss1) and neurokinin B (NKB, encoded by TAC3 in humans and Tac2 in rodents) have been placed as essential gatekeepers of puberty. Studies in humans and rodents have revealed that loss-of-function mutations in the genes encoding either kisspeptin and NKB or their receptors, Kiss1r and neurokinin 3 receptor (NK3R), lead to impaired sexual maturation and infertility. Kisspeptin, NKB, and dynorphin A are co-expressed in neurons of the arcuate nucleus (ARC), so-called Kisspeptin/NKB/Dyn (KNDy) neurons. Importantly, these neurons also co-express NK3R. Compelling evidence suggests a stimulatory role of NKB (or the NK3R agonist, senktide) on LH release in a number of species. This effect is likely mediated by autosynaptic inputs of NKB on KNDy neurons to induce the secretion of gonadotropin-releasing hormone (GnRH) in a kisspeptin-­dependent manner, with the coordinated actions of other neuroendocrine factors, such as dynorphin, glutamate, or GABA. Thus, we have proposed a model in which NKB feeds back to the KNDy neuron to shape the pulsatile release of kisspeptin, and hence GnRH, in a mechanism also dependent on the sex steroid level. Additionally, NKB may contribute to the regulation of the reproductive function by metabolic cues. Investigating how NKB and kisspeptin interact to regulate the gonadotropic axis will offer new insights into the control of GnRH release during puberty onset and the maintenance of the reproductive function in adulthood, offering a platform for the understanding and treatment of a number of reproductive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832

    PubMed  CAS  Google Scholar 

  2. Ojeda SR, Advis JP, Andrews WW (1980) Neuroendocrine control of the onset of puberty in the rat. Fed Proc 39:2365–2371

    PubMed  CAS  Google Scholar 

  3. Herbison A (2006) Physiology of the GnRH neuronal network. In: Neil J, Knobil E (eds) Physiology of reproduction. Academic, San Diego, CA, pp 1415–1482

    Google Scholar 

  4. Herbison AE, Robinson JE, Skinner DC (1993) Distribution of estrogen receptor-­immunoreactive cells in the preoptic area of the ewe: co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone. Neuroendocrinology 57:751–759

    PubMed  CAS  Google Scholar 

  5. Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30:713–743

    PubMed  CAS  Google Scholar 

  6. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, Imamoglu S, Akalin NS, Yuksel B, O’Rahilly S, Semple RK (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet 41:354–358

    PubMed  CAS  Google Scholar 

  7. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976

    PubMed  Google Scholar 

  8. Francou B, Bouligand J, Voican A, Amazit L, Trabado S, Fagart J, Meduri G, Brailly-Tabard S, Chanson P, Lecomte P, Guiochon-Mantel A, Young J (2011) Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations. PLoS One 6:e25614

    PubMed  CAS  Google Scholar 

  9. Fukami M, Maruyama T, Dateki S, Sato N, Yoshimura Y, Ogata T (2010) Hypothalamic dysfunction in a female with isolated hypogonadotropic hypogonadism and compound heterozygous TACR3 mutations and clinical manifestation in her heterozygous mother. Horm Res Paediatr 73:477–481

    PubMed  CAS  Google Scholar 

  10. Gianetti E, Tusset C, Noel SD, Au MG, Dwyer AA, Hughes VA, Abreu AP, Carroll J, Trarbach E, Silveira LF, Costa EM, de Mendonca BB, de Castro M, Lofrano A, Hall JE, Bolu E, Ozata M, Quinton R, Amory JK, Stewart SE, Arlt W, Cole TR, Crowley WF, Kaiser UB, Latronico AC, Seminara SB (2010) TAC3/TACR3 mutations reveal preferential activation of gonadotropin-releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J Clin Endocrinol Metab 95:2857–2867

    PubMed  CAS  Google Scholar 

  11. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    PubMed  CAS  Google Scholar 

  12. Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635

    PubMed  CAS  Google Scholar 

  13. Young J, Bouligand J, Francou B, Raffin-Sanson ML, Gaillez S, Jeanpierre M, Grynberg M, Kamenicky P, Chanson P, Brailly-Tabard S, Guiochon-Mantel A (2010) TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J Clin Endocrinol Metab 95:2287–2295

    PubMed  CAS  Google Scholar 

  14. Yang JJ, Caligioni CS, Chan YM, Seminara SB (2012) Uncovering novel reproductive defects in neurokinin B receptor null mice: closing the gap between mice and men. Endocrinology 153(3):1498–1508

    PubMed  CAS  Google Scholar 

  15. Page NM (2005) New challenges in the study of the mammalian tachykinins. Peptides 26:1356–1368

    PubMed  CAS  Google Scholar 

  16. Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martin JD, Candenas ML (2004) Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 11:2045–2081

    PubMed  CAS  Google Scholar 

  17. Bonner TI, Affolter HU, Young AC, Young WS III (1987) A cDNA encoding the precursor of the rat neuropeptide, neurokinin B. Brain Res 388:243–249

    PubMed  CAS  Google Scholar 

  18. Page NM, Morrish DW, Weston-Bell NJ (2009) Differential mRNA splicing and precursor processing of neurokinin B in neuroendocrine tissues. Peptides 30:1508–1513

    PubMed  CAS  Google Scholar 

  19. Chawla MK, Gutierrez GM, Young WS III, McMullen NT, Rance NE (1997) Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol 384:429–442

    PubMed  CAS  Google Scholar 

  20. Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML (2004) mRNA expression of tachykinins and tachykinin receptors in different human tissues. Eur J Pharmacol 494:233–239

    PubMed  CAS  Google Scholar 

  21. Marksteiner J, Sperk G, Krause JE (1992) Distribution of neurons expressing neurokinin B in the rat brain: immunohistochemistry and in situ hybridization. J Comp Neurol 317:341–356

    PubMed  CAS  Google Scholar 

  22. Navarro VM, Castellano JM, McConkey SM, Pineda R, Ruiz-Pino F, Pinilla L, Clifton DK, Tena-Sempere M, Steiner RA (2011) Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab 300:E202–E210

    PubMed  CAS  Google Scholar 

  23. Warden MK, Young WS III (1988) Distribution of cells containing mRNAs encoding substance P and neurokinin B in the rat central nervous system. J Comp Neurol 272:90–113

    PubMed  CAS  Google Scholar 

  24. Duarte CR, Schutz B, Zimmer A (2006) Incongruent pattern of neurokinin B expression in rat and mouse brains. Cell Tissue Res 323:43–51

    PubMed  CAS  Google Scholar 

  25. Burke MC, Letts PA, Krajewski SJ, Rance NE (2006) Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol 498:712–726

    PubMed  CAS  Google Scholar 

  26. Ciofi P, Krause JE, Prins GS, Mazzuca M (1994) Presence of nuclear androgen receptor-like immunoreactivity in neurokinin B-containing neurons of the hypothalamic arcuate nucleus of the adult male rat. Neurosci Lett 182:193–196

    PubMed  CAS  Google Scholar 

  27. Foradori CD, Amstalden M, Goodman RL, Lehman MN (2006) Colocalisation of dynorphin a and neurokinin B immunoreactivity in the arcuate nucleus and median eminence of the sheep. J Neuroendocrinol 18:534–541

    PubMed  CAS  Google Scholar 

  28. Hrabovszky E, Molnar CS, Sipos M, Vida B, Ciofi P, Borsay BA, Sarkadi L, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Kallo I, Liposits Z (2011) Sexual dimorphism of kisspeptin and neurokinin B immunoreactive neurons in the infundibular nucleus of aged men and women. Front Endocrinol 2:80. doi:10.3389/fendo.2011.00080

    Google Scholar 

  29. Krajewski SJ, Anderson MJ, Iles-Shih L, Chen KJ, Urbanski HF, Rance NE (2005) Morphologic evidence that neurokinin B modulates gonadotropin-releasing hormone secretion via neurokinin 3 receptors in the rat median eminence. J Comp Neurol 489:372–386

    PubMed  CAS  Google Scholar 

  30. Krajewski SJ, Burke MC, Anderson MJ, McMullen NT, Rance NE (2010) Forebrain projections of arcuate neurokinin B neurons demonstrated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neuroscience 166:680–697

    PubMed  CAS  Google Scholar 

  31. Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM (2010) Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology 151:4494–4503

    PubMed  CAS  Google Scholar 

  32. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, Clarke IJ (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148:5752–5760

    PubMed  CAS  Google Scholar 

  33. Yeo SH, Herbison AE (2011) Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology 152:2387–2399

    PubMed  CAS  Google Scholar 

  34. Mussap CJ, Geraghty DP, Burcher E (1993) Tachykinin receptors: a radioligand binding perspective. J Neurochem 60:1987–2009

    PubMed  CAS  Google Scholar 

  35. Seabrook GR, Bowery BJ, Hill RG (1995) Pharmacology of tachykinin receptors on ­neurones in the ventral tegmental area of rat brain slices. Eur J Pharmacol 273:113–119

    PubMed  CAS  Google Scholar 

  36. Pantaleo N, Chadwick W, Park SS, Wang L, Zhou Y, Martin B, Maudsley S (2010) The mammalian tachykinin ligand-receptor system: an emerging target for central neurological disorders. CNS Neurol Disord Drug Targets 9:627–635

    PubMed  CAS  Google Scholar 

  37. Valero MS, Fagundes DS, Grasa L, Arruebo MP, Plaza MA, Murillo MD (2011) Contractile effect of tachykinins on rabbit small intestine. Acta Pharmacol Sin 32:487–494

    PubMed  CAS  Google Scholar 

  38. Page NM, Bell NJ (2002) The human tachykinin NK1 (short form) and tachykinin NK4 receptor: a reappraisal. Eur J Pharmacol 437:27–30

    PubMed  CAS  Google Scholar 

  39. Ding YQ, Shigemoto R, Takada M, Ohishi H, Nakanishi S, Mizuno N (1996) Localization of the neuromedin K receptor (NK3) in the central nervous system of the rat. J Comp Neurol 364:290–310

    PubMed  CAS  Google Scholar 

  40. Navarro VM, Ruiz-Pino F, Sanchez-Garrido MA, Garcia-Galiano D, Hobbs SJ, Manfredi-­Lozano M, León S, Sangiao-Alvarellos S, Castellano JM, Clifton DK, Pinilla L, Steiner RA, Tena-Sempere M (2012) Role of neurokinin B in the control of female puberty and its modulation by metabolic status. J Neurosci 153(1):316–328

    Google Scholar 

  41. Shughrue PJ, Lane MV, Merchenthaler I (1996) In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 372:395–414

    PubMed  CAS  Google Scholar 

  42. Amstalden M, Coolen LM, Hemmerle AM, Billings HJ, Connors JM, Goodman RL, Lehman MN (2009) Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotropin-releasing hormone neurones. J Neuroendocrinol 22:1–12

    PubMed  Google Scholar 

  43. Billings HJ, Connors JM, Altman SN, Hileman SM, Holaskova I, Lehman MN, McManus CJ, Nestor CC, Jacobs BH, Goodman RL (2010) Neurokinin B acts via the neurokinin-3 receptor in the retrochiasmatic area to stimulate luteinizing hormone secretion in sheep. Endocrinology 151:3836–3846

    PubMed  CAS  Google Scholar 

  44. Duque E, Mangas A, Salinas P, Diaz-Cabiale Z, Narvaez JA, Covenas R (2013) Mapping of alpha-neo-endorphin- and neurokinin B-immunoreactivity in the human brainstem. Brain Struct Funct 218(1):131–149

    Google Scholar 

  45. Koutcherov Y, Ashwell KW, Paxinos G (2000) The distribution of the neurokinin B receptor in the human and rat hypothalamus. Neuroreport 11:3127–3131

    PubMed  CAS  Google Scholar 

  46. Fink G (2000) Neuroendocrine regulation of pituitary function: general principles. In: Conn PM, Freeman ME (eds) Neuroendocrinology in physiology and medicine. Humana Press, Totowa, pp 107–134

    Google Scholar 

  47. Herbison AE, Skinner DC, Robinson JE, King IS (1996) Androgen receptor-immunoreactive cells in ram hypothalamus: distribution and co-localization patterns with gonadotropin-­releasing hormone, somatostatin and tyrosine hydroxylase. Neuroendocrinology 63:120–131

    PubMed  CAS  Google Scholar 

  48. Huang X, Harlan RE (1993) Absence of androgen receptors in LHRH immunoreactive neurons. Brain Res 624:309–311

    PubMed  CAS  Google Scholar 

  49. Hrabovszky E, Kallo I, Szlavik N, Keller E, Merchenthaler I, Liposits Z (2007) Gonadotropin-­releasing hormone neurons express estrogen receptor-beta. J Clin Endocrinol Metab 92:2827–2830

    PubMed  CAS  Google Scholar 

  50. Hrabovszky E, Shughrue PJ, Merchenthaler I, Hajszan T, Carpenter CD, Liposits Z, Petersen SL (2000) Detection of estrogen receptor-beta messenger ribonucleic acid and 125I-estrogen binding sites in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 141:3506–3509

    PubMed  CAS  Google Scholar 

  51. Chu Z, Takagi H, Moenter SM (2010) Hyperpolarization-activated currents in gonadotropin-­releasing hormone (GnRH) neurons contribute to intrinsic excitability and are regulated by gonadal steroid feedback. J Neurosci 30:13373–13383

    PubMed  CAS  Google Scholar 

  52. Danzer SC, Price RO, McMullen NT, Rance NE (1999) Sex steroid modulation of neurokinin B gene expression in the arcuate nucleus of adult male rats. Brain Res Mol Brain Res 66:200–204

    PubMed  CAS  Google Scholar 

  53. Dellovade TL, Merchenthaler I (2004) Estrogen regulation of neurokinin B gene expression in the mouse arcuate nucleus is mediated by estrogen receptor alpha. Endocrinology 145:736–742

    PubMed  CAS  Google Scholar 

  54. Eghlidi DH, Haley GE, Noriega NC, Kohama SG, Urbanski HF (2010) Influence of age and 17beta-estradiol on kisspeptin, neurokinin B, and prodynorphin gene expression in the arcuate-­median eminence of female rhesus macaques. Endocrinology 151:3783–3794

    PubMed  CAS  Google Scholar 

  55. Goubillon ML, Forsdike RA, Robinson JE, Ciofi P, Caraty A, Herbison AE (2000) Identification of neurokinin B-expressing neurons as an highly estrogen-receptive, sexually dimorphic cell group in the ovine arcuate nucleus. Endocrinology 141:4218–4225

    PubMed  CAS  Google Scholar 

  56. Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA (2009) Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 29:11859–11866

    PubMed  CAS  Google Scholar 

  57. Ciofi P, Lapirot OC, Tramu G (2007) An androgen-dependent sexual dimorphism visible at puberty in the rat hypothalamus. Neuroscience 146:630–642

    PubMed  CAS  Google Scholar 

  58. Ciofi P, Leroy D, Tramu G (2006) Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience 141:1731–1745

    PubMed  CAS  Google Scholar 

  59. Navarro VM, Gottsch ML, Wu M, Garcia-Galiano D, Hobbs SJ, Bosch MA, Pinilla L, Clifton DK, Dearth A, Ronnekleiv OK, Braun RE, Palmiter RD, Tena-Sempere M, Alreja M, Steiner RA (2011) Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 152:4265–4275

    PubMed  CAS  Google Scholar 

  60. Pillon D, Caraty A, Fabre-Nys C, Bruneau G (2003) Short-term effect of oestradiol on neurokinin B mRNA expression in the infundibular nucleus of ewes. J Neuroendocrinol 15:749–753

    PubMed  CAS  Google Scholar 

  61. Abel TW, Voytko ML, Rance NE (1999) The effects of hormone replacement therapy on hypothalamic neuropeptide gene expression in a primate model of menopause. J Clin Endocrinol Metab 84:2111–2118

    PubMed  CAS  Google Scholar 

  62. Rance NE (2009) Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30:111–122

    PubMed  CAS  Google Scholar 

  63. Rance NE, Bruce TR (1994) Neurokinin B gene expression is increased in the arcuate nucleus of ovariectomized rats. Neuroendocrinology 60:337–345

    PubMed  CAS  Google Scholar 

  64. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146:3686–3692

    PubMed  CAS  Google Scholar 

  65. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984

    PubMed  CAS  Google Scholar 

  66. Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE (2012) Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 153:2800–2812

    PubMed  CAS  Google Scholar 

  67. Ruiz-Pino F, Navarro VM, Bentsen A, García-Galiano D, Sánchez-Garrido MA, Clifton DK, Steiner RA, Pinilla L, Mikkelsen J, Tena-Sempere M (2012) Neurokinin B and the control of the gonadotropic axis in the rat: developmental changes, sexual dimorphism and regulation by gonadal steroids. Endocrinology 153(10):4818–4829

    PubMed  CAS  Google Scholar 

  68. Nurmio M, Tena-Sempere M, Toppari J (2010) Orexins and the regulation of the hypothalamic-­pituitary-testicular axis. Acta Physiol (Oxf) 198:349–354

    CAS  Google Scholar 

  69. Williamson-Hughes PS, Grove KL, Smith MS (2005) Melanin concentrating hormone (MCH): a novel neural pathway for regulation of GnRH neurons. Brain Res 1041:117–124

    PubMed  CAS  Google Scholar 

  70. Kauffman AS, Navarro VM, Kim J, Clifton DK, Steiner RA (2009) Sex differences in the regulation of Kiss1/NKB neurons in juvenile mice: implications for the timing of puberty. Am J Physiol Endocrinol Metab 297:E1212–E1221

    PubMed  CAS  Google Scholar 

  71. Gill JC, Navarro VM, Kwong C, Noel SD, Martin C, Xu S, Clifton DK, Carroll RS, Steiner RA, Kaiser UB (2012) Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid negative feedback than Kiss1. Endocrinology 153(10):4883–4893

    PubMed  CAS  Google Scholar 

  72. Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA (2010) Neurokinin B and the hypothalamic regulation of reproduction. Brain Res 1364:116–128

    PubMed  CAS  Google Scholar 

  73. Robinson JE, Birch RA, Taylor JA, Foster DL, Padmanabhan V (2002) In utero programming of sexually differentiated gonadotropin releasing hormone (GnRH) secretion. Domest Anim Endocrinol 23:43–52

    PubMed  CAS  Google Scholar 

  74. Sandoval-Guzman T, Rance NE (2004) Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of Fos expression in the rat hypothalamus. Brain Res 1026:307–312

    PubMed  CAS  Google Scholar 

  75. Rance NE, Young WS III (1991) Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women. Endocrinology 128:2239–2247

    PubMed  CAS  Google Scholar 

  76. Wakabayashi Y, Nakada T, Murata K, Ohkura S, Mogi K, Navarro VM, Clifton DK, Mori Y, Tsukamura H, Maeda K, Steiner RA, Okamura H (2010) Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 30:3124–3132

    PubMed  CAS  Google Scholar 

  77. Lehman MN, Coolen LM, Goodman RL (2010) Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-­releasing hormone secretion. Endocrinology 151:3479–3489

    PubMed  CAS  Google Scholar 

  78. True C, Kirigiti M, Ciofi P, Grove KL, Smith MS (2011) Characterisation of arcuate nucleus kisspeptin/neurokinin B neuronal projections and regulation during lactation in the rat. J Neuroendocrinol 23:52–64

    PubMed  CAS  Google Scholar 

  79. Kinsey-Jones JS, Grachev P, Li XF, Lin YS, Milligan SR, Lightman SL, O’Byrne KT (2012) The inhibitory effects of neurokinin B on GnRH pulse generator frequency in the female rat. Endocrinology 153(1):307–315

    PubMed  CAS  Google Scholar 

  80. Ciccone NA, Xu S, Lacza CT, Carroll RS, Kaiser UB (2010) Frequency-dependent regulation of follicle-stimulating hormone beta by pulsatile gonadotropin-releasing hormone is mediated by functional antagonism of bZIP transcription factors. Mol Cell Biol 30:1028–1040

    PubMed  CAS  Google Scholar 

  81. Marshall JC, Dalkin AC, Haisenleder DJ, Paul SJ, Ortolano GA, Kelch RP (1991) Gonadotropin-releasing hormone pulses: regulators of gonadotropin synthesis and ovulatory cycles. Recent Prog Horm Res 47:155–187; discussion 159–188

    Google Scholar 

  82. García-Galiano D, León-Tellez S, Manfredi-Lozano M, Romero-Ruiz A, Navarro VM, Pinilla L, Tena-Sempere M (2012) Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice. Endocrinology 153(1):316–328

    PubMed  Google Scholar 

  83. Ramaswamy S, Seminara SB, Plant TM (2011) Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinology 94(3):237–245

    PubMed  CAS  Google Scholar 

  84. Corander MP, Challis BG, Thompson EL, Jovanovic Z, Loraine Tung YC, Rimmington D, Huhtaniemi IT, Murphy KG, Topaloglu AK, Yeo GS, O’Rahilly S, Dhillo WS, Semple RK, Coll AP (2010) The effects of neurokinin B upon gonadotropin release in male rodents. J Neuroendocrinol 22:181–187

    PubMed  CAS  Google Scholar 

  85. Ohkura S, Takase K, Matsuyama S, Mogi K, Ichimaru T, Wakabayashi Y, Uenoyama Y, Mori Y, Steiner RA, Tsukamura H, Maeda KI, Okamura H (2009) Gonadotropin-releasing hormone pulse generator activity in the hypothalamus of the goat. J Neuroendocrinol 21:813–821

    PubMed  CAS  Google Scholar 

  86. Sawai N, Iijima N, Takumi K, Matsumoto K, Ozawa H (2012) Immunofluorescent histochemical and ultrastructural studies on the innervation of kisspeptin/neurokinin B neurons to tuberoinfundibular dopaminergic neurons in the arcuate nucleus of rats. Neurosci Res 74(1):10–16

    PubMed  CAS  Google Scholar 

  87. Todman MG, Han SK, Herbison AE (2005) Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience 132:703–712

    PubMed  CAS  Google Scholar 

  88. Glidewell-Kenney CA, Grove AMH, Iyer K, Mellon PL (2010) The neurokinin 3 receptor agonist, senktide, reduces gonadotropin releasing hormone synthesis and secretion in the inmortalized GT1-7 hypothalamic cell model. In: Society for Neuroscience 40th annual meeting, San Diego

    Google Scholar 

  89. Castellano JM, Navarro VM, Fernandez-Fernandez R, Castano JP, Malagon MM, Aguilar E, Dieguez C, Magni P, Pinilla L, Tena-Sempere M (2006) Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol Cell Endocrinol 257–258:75–83

    PubMed  Google Scholar 

  90. Guerriero KA, Keen KL, Terasawa E (2012) Developmental increase in kisspeptin-54 release in vivo is independent of the pubertal increase in estradiol in female rhesus monkeys (Macaca mulatta). Endocrinology 153(4):1887–1897

    PubMed  CAS  Google Scholar 

  91. Keen KL, Wegner FH, Bloom SR, Ghatei MA, Terasawa E (2008) An increase in kisspeptin-­54 release occurs with the pubertal increase in luteinizing hormone-releasing hormone-1 release in the stalk-median eminence of female rhesus monkeys in vivo. Endocrinology 149:4151–4157

    PubMed  CAS  Google Scholar 

  92. Navarro VM, Tena-Sempere M (2011) Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 8(1):40–53

    PubMed  Google Scholar 

  93. Navarro VM (2012) New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front Endocrinol (Lausanne) 3:48

    Google Scholar 

  94. d’Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH (2008) Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 149:3926–3932

    PubMed  Google Scholar 

  95. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80:264–272

    PubMed  CAS  Google Scholar 

  96. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR (2004) Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-­pituitary-gonadal axis. J Neuroendocrinol 16:850–858

    PubMed  CAS  Google Scholar 

  97. Kallo I, Vida B, Deli L, Molnar CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z (2012) Co-Localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 24:464–476

    PubMed  CAS  Google Scholar 

  98. Matsuyama S, Ohkura S, Mogi K, Wakabayashi Y, Mori Y, Tsukamura H, Maeda K, Ichikawa M, Okamura H (2011) Morphological evidence for direct interaction between kisspeptin and gonadotropin-releasing hormone neurons at the median eminence of the male goat: an immunoelectron microscopic study. Neuroendocrinology 94:323–332

    PubMed  CAS  Google Scholar 

  99. Uenoyama Y, Inoue N, Pheng V, Homma T, Takase K, Yamada S, Ajiki K, Ichikawa M, Okamura H, Maeda KI, Tsukamura H (2011) Ultrastructural evidence of kisspeptin-­gonadotropin-releasing hormone interaction in the median eminence of female rats: implication of axo-axonal regulation of GnRH release. J Neuroendocrinol 23(10):863–870

    PubMed  CAS  Google Scholar 

  100. Kinoshita F, Nakai Y, Katakami H, Imura H (1982) Suppressive effect of dynorphin-(1-13) on luteinizing hormone release in conscious castrated rats. Life Sci 30:1915–1919

    PubMed  CAS  Google Scholar 

  101. Schulz R, Wilhelm A, Pirke KM, Gramsch C, Herz A (1981) Beta-endorphin and dynorphin control serum luteinizing hormone level in immature female rats. Nature 294:757–759

    PubMed  CAS  Google Scholar 

  102. Mitchell V, Prevot V, Jennes L, Aubert JP, Croix D, Beauvillain JC (1997) Presence of mu and kappa opioid receptor mRNAs in galanin but not in GnRH neurons in the female rat. Neuroreport 8:3167–3172

    PubMed  CAS  Google Scholar 

  103. Sannella MI, Petersen SL (1997) Dual label in situ hybridization studies provide evidence that luteinizing hormone-releasing hormone neurons do not synthesize messenger ribonucleic acid for mu, kappa, or delta opiate receptors. Endocrinology 138:1667–1672

    PubMed  CAS  Google Scholar 

  104. Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J Jr, Atkin S, Bookout AL, Rovinsky S, Frazao R, Lee CE, Gautron L, Zigman JM, Elias CF (2011) Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 173:37–56

    PubMed  CAS  Google Scholar 

  105. Gottsch ML, Popa SM, Lawhorn JK, Qiu J, Tonsfeldt KJ, Bosch MA, Kelly MJ, Ronnekleiv OK, Sanz E, McKnight GS, Clifton DK, Palmiter RD, Steiner RA (2011) Molecular properties of kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 152:4298–4309

    PubMed  CAS  Google Scholar 

  106. Steiner RA, Navarro VM (2012) Tacking toward reconciliation on Tacr3/TACR3 mutations. Endocrinology 153(4):1578–1581

    PubMed  CAS  Google Scholar 

  107. Moenter SM, Burger LL, Chu Z (2011) Gonadotropin-releasing hormone (GnRH) regulates the excitability of neurokinin B (NKB) neurons of the mouse arcuate nucleus. Society for Neuroscience Annual Meeting, Washington, DC

    Google Scholar 

  108. Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147:5817–5825

    PubMed  CAS  Google Scholar 

  109. Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574

    PubMed  CAS  Google Scholar 

  110. Roa J, Navarro VM, Tena-Sempere M (2011) Kisspeptins in reproductive biology: consensus knowledge and recent developments. Biol Reprod 85(4):650–660

    PubMed  CAS  Google Scholar 

  111. Navarro VM, Fernandez-Fernandez R, Castellano JM, Roa J, Mayen A, Barreiro ML, Gaytan F, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2004) Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol 561:379–386

    PubMed  CAS  Google Scholar 

  112. Pineda R, Garcia-Galiano D, Roseweir A, Romero M, Sanchez-Garrido MA, Ruiz-Pino F, Morgan K, Pinilla L, Millar RP, Tena-Sempere M (2010) Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology 151:722–730

    PubMed  CAS  Google Scholar 

  113. Clarkson J, Boon WC, Simpson ER, Herbison AE (2009) Postnatal development of an estradiol-­kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150:3214–3220

    PubMed  CAS  Google Scholar 

  114. Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB (2010) Reproductive hormone-­dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One 5:e11911

    PubMed  Google Scholar 

  115. Nestor CC, Briscoe AM, Davis SM, Valent M, Goodman RL, Hileman SM (2012) Evidence of a role for kisspeptin and neurokinin B in puberty of female sheep. Endocrinology 153:2756–2765

    PubMed  CAS  Google Scholar 

  116. Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M (2010) Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 1364:129–138

    PubMed  CAS  Google Scholar 

  117. Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2005) Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 146:3917–3925

    PubMed  CAS  Google Scholar 

  118. True C, Kirigiti MA, Kievit P, Grove KL, Smith MS (2011) Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance. J Neuroendocrinol 23:1099–1112

    PubMed  CAS  Google Scholar 

  119. Tovar S, Vazquez MJ, Navarro VM, Fernandez-Fernandez R, Castellano JM, Vigo E, Roa J, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2006) Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology 147:2696–2704

    PubMed  CAS  Google Scholar 

  120. Li XF, Lin YS, Kinsey-Jones JS, O’Byrne KT (2012) High-fat diet increases LH pulse frequency and kisspeptin-neurokinin B expression in puberty-advanced female rats. Endocrinology 153(9):4422–4431

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Marie Curie Outgoing International Fellowship within the seventh Framework Programme of the European Union. The author is grateful to Drs. Amy Oakley and Leonor Pinilla for their constructive comments on the manuscript and Drs. Manuel Tena-Sempere, Don Clifton, and Robert Steiner for their contribution to some of the studies highlighted in this chapter.

Conflict of interest: The author reports no conflicts of interest.

Disclosure: The author has nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Navarro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Navarro, V.M. (2013). Interactions Between Kisspeptins and Neurokinin B. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_15

Download citation

Publish with us

Policies and ethics