Skip to main content
Log in

Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Tumor-elicited immunosuppression is one of the essential mechanisms for tumor evasion of immune surveillance. It is widely thought to be one of the main reasons for the failure of tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of cells that play an important role in tumor-induced immunosuppression. These cells expand in tumor-bearing individuals and suppress T cell responses via various mechanisms. Curdlan, the linear (1 → 3)-β-glucan from Agrobacterium, has been applied in the food industry and other sectors. The anti-tumor property of curdlan has been recognized for a long time although the underlying mechanism still needs to be explored. In this study, we investigated the effect of curdlan on MDSCs and found that curdlan could promote MDSCs to differentiate into a more mature state and then significantly reduce the suppressive function of MDSCs, decrease the MDSCs in vivo and down-regulate the suppression in tumor-bearing mice, thus leading to enhanced anti-tumor immune responses. We, therefore, increase the understanding of further mechanisms by which curdlan achieves anti-tumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1 → 3)-β-d-glucans. Appl Microbiol Biotechnol. 2005;68(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  2. Laroche C, Michaud P. New developments and prospective applications for β (1,3) glucans. Recent Patient Biotechnol. 2007;1(1):59–73.

    Article  CAS  Google Scholar 

  3. Bohn JA, BeMiller JN. (1 → 3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohyd Polym. 1995;28(1):3–14.

    Article  CAS  Google Scholar 

  4. Herre J, Gordon S, Brown GD. Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol Immunol. 2004;40(12):869–76.

    Article  CAS  PubMed  Google Scholar 

  5. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, et al. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169(7):3876–82.

    Article  CAS  PubMed  Google Scholar 

  6. Guo C, Wong KH, Cheung PC. Hot water extract of the sclerotium of Polyporus rhinocerus Cooke enhances the immune functions of murine macrophages. Int J Med Mushrooms. 2011;13(3):237–44.

    Article  PubMed  Google Scholar 

  7. Batbayar S, Kim MJ, Kim HW. Medicinal mushroom Lingzhi or Reishi, Ganoderma lucidum (W.Curt.:Fr.) P. Karst., beta-glucan induces Toll-like receptors and fails to induce inflammatory cytokines in NF-kappaB inhibitor-treated macrophages. Int J Med Mushrooms. 2011;13(3):213–25.

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Gu W, Zhao K. The role of PI3K/Akt pathway in β-glucan-induced dendritic cell maturation. Int Immunopharmacol. 2011;11(4):529.

    Article  CAS  PubMed  Google Scholar 

  9. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat Immunol. 2009;10(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  10. Xu S, Huo J, Gunawan M, Su IH, Lam KP. Activated dectin-1 localizes to lipid raft microdomains for signaling and activation of phagocytosis and cytokine production in dendritic cells. J Biol Chem. 2009;284(33):22005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kodama N, Mizuno S, Nanba H, Saito N. Potential antitumor activity of a low-molecular-weight protein fraction from Grifola frondosa through enhancement of cytokine production. J Med Food. 2010;13(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  12. Kim SP, Kang MY, Kim JH, Nam SH, Friedman M. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. J Agric Food Chem. 2011;59(18):9861–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mushiake H, Tsunoda T, Nukatsuka M, Shimao K, Fukushima M, Tahara H. Dendritic cells might be one of key factors for eliciting antitumor effect by chemoimmunotherapy in vivo. Cancer Immunol Immunother. 2005;54(2):120–8.

    Article  PubMed  Google Scholar 

  14. Chen J, Zhang XD, Jiang Z. The application of fungal β-glucans for the treatment of colon cancer. Anticancer Agents Med Chem. 2013;13(5):725–30.

    Article  CAS  PubMed  Google Scholar 

  15. Harnack U, Eckert K, Fichtner I, Pecher G. Oral administration of a soluble 1-3, 1-6 β-glucan during prophylactic survivin peptide vaccination diminishes growth of a B cell lymphoma in mice. Int Immunopharmacol. 2009;9(11):1298–303.

    Article  CAS  PubMed  Google Scholar 

  16. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117(5):1155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006;55(3):237–45.

    Article  PubMed  Google Scholar 

  20. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25(1):267–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 2007;13(18):5243–8.

    Article  CAS  PubMed  Google Scholar 

  22. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–89.

    Article  CAS  PubMed  Google Scholar 

  23. Diaz-Montero CM, Salem M, Nishimura M, Garrett-Mayer E, Cole D, Montero A. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  24. Bronte V, Zanovello P. Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol. 2005;5(8):641–54.

    Article  CAS  PubMed  Google Scholar 

  25. Huang B, Pan P-Y, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31.

    Article  CAS  PubMed  Google Scholar 

  26. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian J, Ma J, Ma K, Guo H, Baidoo SE, Zhang Y, et al. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol. 2013;43(5):1220–30.

    Article  CAS  PubMed  Google Scholar 

  28. Tian J, Rui K, Tang X, Ma J, Wang Y, Tian X, et al. microRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting runx1. J Immunol. 2015;195(3):1301–11.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Tian J, Tang X, Rui K, Ma J, Mao C, et al. MiR-346 regulates CD4+ CXCR5+ T cells in the pathogenesis of Graves’ disease. Endocrine. 2015;49(3):752–60.

    Article  CAS  PubMed  Google Scholar 

  30. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, et al. Reduced frequencies and suppressive function of CD4+ CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106(6):2018–25.

    Article  CAS  PubMed  Google Scholar 

  31. Chang L-Y, Lin Y-C, Chiang J-M, Mahalingam J, Su S-H, Huang C-T, et al. Blockade of TNF-α signaling benefits cancer therapy by suppressing effector regulatory T cell expansion. Oncoimmunology. 2015;4(10):e1040215.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yu G-T, Bu L-L, Huang C-F, Zhang W-F, Chen W-J, Gutkind JS, et al. PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget. 2015;6(39):42067–80.

    PubMed  PubMed Central  Google Scholar 

  33. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E. Effects of β-glucans on the immune system. Medicina (Kaunas). 2007;43(8):597–606.

    Google Scholar 

  34. Chan GC, Chan WK, Sze DM. The effects of β-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chihara G, Hamuro J, Maeda YY, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an Edible Mushroom). Cancer Res. 1970;30(11):2776–81.

    CAS  PubMed  Google Scholar 

  36. Yamamoto T, Yamashita T, Tsubura E. Inhibition of pulmonary metastasis of Lewis lung carcinoma by a glucan, Schizophyllan. Invasion Metastasis. 1981;1(1):71–84.

    CAS  PubMed  Google Scholar 

  37. Zhan X-B, Lin C-C, Zhang H-T. Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol. 2012;93(2):525–31.

    Article  CAS  PubMed  Google Scholar 

  38. Ding J, Feng T, Ning Y, Li W, Wu Q, Qian K, et al. β-Glucan enhances cytotoxic T lymphocyte responses by activation of human monocyte-derived dendritic cells via the PI3 K/AKT pathway. Hum Immunol. 2015;76(2–3):146–54.

    Article  CAS  PubMed  Google Scholar 

  39. Leibundgut-Landmann S, Osorio F, Brown GD. Reis e Sousa C. Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood. 2008;112(13):4971–80.

    Article  CAS  PubMed  Google Scholar 

  40. Wu TC, Xu K, Banchereau R, Marches F, Yu CI, Martinek J, et al. Reprogramming tumor-infiltrating dendritic cells for CD103+ CD8+ mucosal T-cell differentiation and breast cancer rejection. Cancer Immunol Res. 2014;2(5):487–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Min L, Isa SA, Fam WN, Sze SK, Beretta O, Mortellaro A, et al. Synergism between curdlan and GM-CSF confers a strong inflammatory signature to dendritic cells. J Immunol. 2012;188(4):1789–98.

    Article  CAS  PubMed  Google Scholar 

  42. Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, et al. Recognition of tumor cells by dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife. 2014;3:e04177.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev. 2010;234(1):335–52.

    Article  CAS  PubMed  Google Scholar 

  44. Xu S, Huo J, Lee KG, Kurosaki T, Lam KP. Phospholipase cgamma2 is critical for dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem. 2009;284(11):7038–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13(3):246–54.

    Article  CAS  PubMed  Google Scholar 

  46. LeibundGut-Landmann S, Grosz O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–8.

    Article  CAS  PubMed  Google Scholar 

  47. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hofstetter HH, Toyka KV, Tary-Lehmann M, Lehmann PV. Kinetics and organ distribution of IL-17-producing CD4 cells in proteolipid protein 139–151 peptide-induced experimental autoimmune encephalomyelitis of SJL Mice. J Immunol. 2007;178(3):1372–8.

    Article  CAS  PubMed  Google Scholar 

  49. Masuda Y, Inoue M, Miyata A, Mizuno S, Nanba H. Maitake β-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice. Int Immunopharmacol. 2009;9(5):620–6.

    Article  CAS  PubMed  Google Scholar 

  50. Qi C, Cai Y, Gunn L, Ding C, Li B, Kloecker G, et al. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood. 2011;117(25):6825–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Specialized Project for Clinical Medicine of Jiangsu Province (Grant No. BL2014065), Natural Science Foundation of Jiangsu (Grant No. BK20150533), National Natural Science Foundation of China (Grant Nos. 31170849, 31470881), Science and Technology Support Program (Social Development) of Zhenjiang (Grant Nos. SH2014039, SH2014042), Jiangsu Province “333” Project (Grant No. BRA2015197), Summit of the Six Top Talents Program of Jiangsu Province (Grant No. 2015-WSN-116), Jiangsu University Science Foundation (Grant Nos. 15JDG070, 11JDG093, FCJJ2015022), Graduate Student Research and Innovation Program of Jiangsu Province (Grant No. KYLX_1074), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjun Wang.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Additional information

Jie Tian and Ke Rui have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, K., Tian, J., Tang, X. et al. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden. Immunol Res 64, 931–939 (2016). https://doi.org/10.1007/s12026-016-8789-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8789-7

Keywords

Navigation