Skip to main content

Advertisement

Log in

CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease

  • Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Genetically engineered T cells expressing a chimeric antigen receptor (CAR-T) targeting specific antigens present on acute lymphoblastic leukemia (ALL) blasts have generated promising results in children and adults with relapsed and refractory disease. We review the current evidence for CAR-T cell therapy in ALL, associated toxicities, and efforts to improve durable response to therapy.

Recent Findings

CD19-directed CAR-T cells have recently been approved by the FDA for use in children and young adults with ALL and in adults with diffuse large B cell lymphoma (DLBCL) in the relapsed/refractory setting. CD22-directed CAR-T cells have shown efficacy against leukemia as well in a recent clinical trial, representing the first alternative CAR target to approach comparable efficacy to CD19 CAR-T cells. Standardization of toxicity grading and management, strategies to combat significant relapse rates after CAR-T therapy, and applicability of CAR-T cells to treat central nervous system (CNS) disease remain challenges in the field and represent priorities for continued research.

Summary

CAR-T cells are a feasible, effective, and rapidly evolving therapy for patients with relapsed and refractory B cell malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rosenbaum L. Tragedy, perseverance, and chance—the story of CAR-T therapy. N Engl J Med. 2017;377(14):1313–5.

    Article  PubMed  Google Scholar 

  2. Nalley C. CAR-T cell therapy approved to treat adults with certain types of large B-cell lymphoma. Oncology Times 2017.

  3. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  4. Bhojwani D, Pui C-H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14(6):e217.

    Article  Google Scholar 

  5. Locatelli F, Schrappe M, Bernardo ME, Rutella S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120(14):2807–16. https://doi.org/10.1182/blood-2012-02-265884.

    Article  CAS  PubMed  Google Scholar 

  6. Pulte D, Jansen L, Gondos A, Katalinic A, Barnes B, Ressing M, et al. Survival of adults with acute lymphoblastic leukemia in Germany and the United States. PLoS One. 2014;9(1):e85554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–50.

    Article  CAS  PubMed  Google Scholar 

  8. •• Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Translat Med. 2014;6(224):224ra25. Phase 1 clinical trial in 16 adult patients with B-ALL treated with a CD19 CAR with CD28 costimulatory domain, inducing a remission in 88% of patients. Some patients underwent subsequent HSCT after CAR T therapy.

    Article  CAS  Google Scholar 

  9. •• Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New England J Med. 2014;371(16):1507–17. Phase 1 trial of CD19 CAR T cell with 4-1BB costimulatory domain in 25 pediatric patients and 5 adult patients with ALL, with a 90% complete response rate by morphology (73% MRD-negative CR), and prolonged B cell aplasia in some patients up to 2 years.

    Article  CAS  Google Scholar 

  10. •• Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. https://doi.org/10.1016/s0140-6736(14)61403-3. Phase 1 clinical trial of CD19 CAR T cells with CD-28 costimulatory signal in 20 pediatric patients with B-ALL demonstrated feasibility and safety of CD19 CARs with a 70% morphologic complete response rate.

    Article  CAS  PubMed  Google Scholar 

  11. •• Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR–T cells of defined CD4 : CD8 composition in adult B cell ALL patients. J Clin Investig. 2016;126(6):2123. CD19 CAR T cell trial in 29 adult patients with B-ALL using a defined CD4:CD8 ratio of the CARs. This study implemented a stratified dosing regimen based on disease burden to minimize toxicity.

    Article  PubMed  Google Scholar 

  12. •• Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K et al. Intent to treat leukemia remission by CD19CAR T cells of defined formulation and dose in children and young adults. Blood. 2017:769208. Phase 1 trial of 45 pediatric patients with B-ALL treated with a CD19 CAR T cell with defined CD4:CD8 ratio. Demonstrated a MRDremission rate of 89% by intent-to-treat analysis.

  13. Brocker T. Chimeric Fv-zeta or Fv-epsilon receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood. 2000;96(5):1999–2001.

    CAS  PubMed  Google Scholar 

  14. • Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66(22):10995–1004. https://doi.org/10.1158/0008-5472.CAN-06-0160. This pre-clinical study introduced the CD28 second signal into the CD19 CAR consturction and established the importance of the costimulatory domain to enhance CAR T cell activation, persistence, and efficacy.

    Article  CAS  PubMed  Google Scholar 

  15. • Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64. https://doi.org/10.1038/mt.2009.83. A preclinical study using the 4-1BB costimulatory showing improved CAR persistence in vivo when compared to the CD28 second signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009;106(9):3360–5. https://doi.org/10.1073/pnas.0813101106.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121(7):1165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919. Long-term follow-up data on a cohort of 53 adult patients with ALL treated with CD19 CAR T cells who had a median OS of 12.9 months.

    Article  CAS  PubMed  Google Scholar 

  19. • Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer discovery. 2016;6(6):664–79. https://doi.org/10.1158/2159-8290.CD-16-0040. Analysis of cytokine levels in 51 patients treated with CD19 CAR T cell therapy who developed cytokine release syndrome. Established predictive models to identify patients at risk of developing severe CRS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010;18(4):666–8. https://doi.org/10.1038/mt.2010.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah BD, Stock W, Wierda WG, Oluwole O, Holmes H, Schiller GJ, et al. Phase 1 results of ZUMA-3: KTE-C19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in Adult patients with relapsed/refractory acute lymphoblastic leukemia (R/R ALL). Blood. 2017;130(Suppl 1):888.

    Google Scholar 

  22. Lee DW, Stetler-Stevenson M, Yuan CM, Shah NN, Delbrook C, Yates B, et al. Long-term outcomes following CD19 CAR T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation. Blood. 2016;

  23. Maude SL, Teachey DT, Rheingold SR, Shaw PA, Aplenc R, Barrett DM, et al. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. J Clin Oncol. 2016;34(15_suppl):3011. https://doi.org/10.1200/JCO.2016.34.15_suppl.3011.

    Article  Google Scholar 

  24. Grupp SA, Maude SL, Shaw PA, Aplenc R, Barrett DM, Callahan C et al. Durable remissions in children with relapsed/refractory ALL treated with T cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood 2015.

  25. Maude SL, Barrett DM, Ambrose DE, Rheingold SR, Aplenc R, Teachey DT et al. Efficacy and safety of humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 in children with relapsed/refractory ALL. Blood 2015.

  26. Maude SL, Barrett DM, Rheingold SR, Aplenc R, Teachey DT, Callahan C et al. Efficacy of humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in children and young adults with relapsed/refractory acute lymphoblastic leukemia. Blood 2016.

  27. Maude SL, Pulsipher MA, Boyer MW, Grupp SA, Davies SM, Phillips CL et al. Efficacy and safety of CTL019 in the first US phase II multicenter trial in pediatric relapsed/refractory acute lymphoblastic leukemia: results of an interim analysis. Blood 2016.

  28. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  CAS  PubMed  Google Scholar 

  29. Lee DW, Wayne A, Huynh V, Handgretinger R, Pieters R, Michel G, et al. KTE-C19 (anti-CD19 chimeric antigen receptor [CAR] T cell therapy) in pediatric and adolescent patients with relapsed/refractory acute lymphoblastic leukemia (R/R ALL): preliminary results of ZUMA-4. Clin Lympho Myeloma Leuk. 2017;17:S252–S3.

    Article  Google Scholar 

  30. • Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2017; https://doi.org/10.1038/nm.4441. First clinical trial using CD22 targeted CAR T cell in 21 pediatric and adult patients with B-ALL, 17 of whom had relapsed after prior anti-CD19 immunotherapy. Morphologic complete remission was seen in 73% of patients who received doses ≥ 1 × 10 6 cells/kg.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laetsch TW, Maude SL, Grupp SA, Boyer MW, Harris AC, Qayed M, et al. CTL019 therapy appears safe and effective in pediatric patients with Down Syndrome with relapsed/refractory (r/r) acute lymphoblastic leukemia. Blood. 2017;130(Suppl 1):1280.

    Google Scholar 

  32. Pulsipher MA, Langholz B, Wall DA, Schultz KR, Bunin N, Carroll W, et al. Risk factors and timing of relapse after allogeneic transplantation in pediatric ALL: for whom and when should interventions be tested? Bone Marrow Transplant. 2015;50(9):1173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pulsipher MA, Carlson C, Langholz B, Wall DA, Schultz KR, Bunin N, et al. IgH-V (D) J NGS-MRD measurement pre-and early post-allotransplant defines very low-and very high-risk ALL patients. Blood. 2015;125(22):3501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shalabi H, Shah NN, Fry TJ, Yates B, Delbrook C, Yuan C, et al. Intensification of lymphodepletion optimizes CAR re-treatment efficacy. Blood. 2017;130(Suppl 1):3889.

    Google Scholar 

  35. Mueller KT, Waldron E, Sickert D, Grupp SA, Maude SL, Levine JE, et al. Impact of humoral immunogenicity (anti-mCAR19 antibodies) on CTL019 cellular kinetics, efficacy, and safety. Blood. 2017;130(Suppl 1):1281.

    Google Scholar 

  36. Maude SL, Hucks GE, Callahan C, Baniewicz D, Fasano C, Barker C, et al. Durable remissions with humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in CAR-naive and CAR-exposed children and young adults with relapsed/refractory acute lymphoblastic leukemia. Blood. 2017;130(Suppl 1):1319.

    Google Scholar 

  37. Shalabi H, Kraft IL, Wang H-W, Yuan CM, Yates B, Delbrook C et al. Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica. 2018:haematol. 2017.183459.

  38. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Zhang WY, Han QW, Liu Y, Dai HR, Guo YL, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol. 2014;155(2):160–75. https://doi.org/10.1016/j.clim.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  40. Deniger DC, Yu J, Huls MH, Figliola MJ, Mi T, Maiti SN, et al. Sleeping beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS One. 2015;10(6):e0128151. https://doi.org/10.1371/journal.pone.0128151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin H, Dong Z, Wen F, Cheng W, Sun H, Wei G, et al. CAR-T cells targeting BAFF-receptor for B-cell malignancies: a potential alternative to CD19. Blood. 2017;130(Suppl 1):3180.

    Google Scholar 

  42. Schneider D, Xiong Y, Wu D, Nlle V, Schmitz S, Haso W, et al. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer. 2017;5:42. https://doi.org/10.1186/s40425-017-0246-1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B, Qin H, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. https://doi.org/10.1038/ncomms12320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gardner R, Wu D, Cherian S, Fang M, Hanafi L-A, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10. https://doi.org/10.1182/blood-2015-08-665547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016;126(10):3814–26.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Laborda E, Hampton EN, Lee SC, Woods AK, Young TS. A novel switchable CAR-T platform for acute lymphoblastic leukemia treatment. Blood. 2017;130(Suppl 1):3890.

    Google Scholar 

  47. Upperman JS, Bucuvalas JC, Williams FN, Cairns BA, Cox CS Jr, Doctor A, et al. Specific etiologies associated with the multiple organ dysfunction syndrome in children: part 2. Pediatr Crit Care Med. 2017;18(3_suppl Suppl 1):S58–66. https://doi.org/10.1097/PCC.0000000000001051.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr Res Transl Med. 2017;65(3):93–102. https://doi.org/10.1016/j.retram.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  49. Fitzgerald JC, Weiss SL, Maude SL, Barrett DM, Lacey SF, Melenhorst JJ, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–e31. https://doi.org/10.1097/CCM.0000000000002053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood. 1999;94(7):2217–24.

    CAS  PubMed  Google Scholar 

  51. Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol. 2009;5(5):499–521. https://doi.org/10.1586/eci.09.31.

    Article  CAS  PubMed  Google Scholar 

  52. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121(26):5154–7. https://doi.org/10.1182/blood-2013-02-485623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. •• Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. Established a revised grading scheme for CRS in the context of CAR T cell therapy with corresponding treatment guidelines to improve toxicity management.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. https://doi.org/10.1038/nrclinonc.2017.148.

    Article  CAS  PubMed  Google Scholar 

  55. Frey NV, Levine BL, Lacey SF, Grupp SA, Maude SL, Schuster SJ et al. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. Blood 2014.

  56. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88. https://doi.org/10.1016/j.bbamcr.2011.01.034.

    Article  CAS  PubMed  Google Scholar 

  57. Trottestam H, Horne A, Arico M, Egeler RM, Filipovich AH, Gadner H, et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: long-term results of the HLH-94 treatment protocol. Blood. 2011;118(17):4577–84. https://doi.org/10.1182/blood-2011-06-356261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arico M, Danesino C, Pende D, Moretta L. Pathogenesis of haemophagocytic lymphohistiocytosis. Br J Haematol. 2001;114(4):761–9.

    Article  CAS  PubMed  Google Scholar 

  59. • Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19. https://doi.org/10.1158/2159-8290.CD-17-0698. Identified risk factors for the development of severe neurotoxicity and showed the severe neurotoxicity is related to endothelial dysfunction and vascular permeability of the blood-brain barrier.

    Article  CAS  PubMed  Google Scholar 

  60. Hawkes N. Trial of novel leukaemia drug is stopped for second time after two more deaths. BMJ. 2016;355:i6376. https://doi.org/10.1136/bmj.i6376.

    Article  PubMed  Google Scholar 

  61. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Graham C, Yallop D, Jozwik A, Patten P, Dunlop A, Ellard R et al. Preliminary results of UCART19, an allogeneic anti-CD19 CAR T-cell product, in a first-in-human trial (CALM) in adult patients with CD19<sup>+</sup> relapsed/refractory B-cell acute lymphoblastic leukemia. Blood. 2017;130(Suppl 1):887-.

  63. Qasim W, Ciocarlie O, Adams S, Inglott S, Murphy C, Rivat C, et al. Preliminary results of UCART19, an allogeneic anti-CD19 CAR T-cell product in a first-in-human trial (PALL) in pediatric patients with CD19+ relapsed/refractory B-cell acute lymphoblastic leukemia. Blood. 2017;130(Suppl 1):1271.

    Google Scholar 

  64. Balassa K, Rocha V. Anticancer cellular immunotherapies derived from umbilical cord blood. Expert Opin Biol Ther 2017:1–14. doi:https://doi.org/10.1080/14712598.2018.1402002, 18.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Lee receives research funding from a St. Baldrick’s Foundation Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Lee.

Ethics declarations

Conflict of Interest

Daniel W. Lee is a principal investigator on ZUMA4 CD19 CAR T cell Phase I/II study in pediatric ALL at the University of Virginia and receives research funding from a St. Baldrick’s Foundation Scholar Award.

Katherine C. Pehlivan and Brynn B. Duncan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Acute Lymphocytic Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pehlivan, K.C., Duncan, B.B. & Lee, D.W. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr Hematol Malig Rep 13, 396–406 (2018). https://doi.org/10.1007/s11899-018-0470-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-018-0470-x

Keywords

Navigation