Skip to main content

Advertisement

Log in

Alteration of Esophageal Microbiome by Antibiotic Treatment Does Not Affect Incidence of Rat Esophageal Adenocarcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Recent studies suggest that chronic inflammation-associated cancer is relevant to microbiome. Esophageal adenocarcinoma arises from an inflammatory condition called Barrett’s esophagus, which is caused by gastroesophageal reflux. We hypothesized that esophageal microbiome plays a role in carcinogenesis of esophageal adenocarcinoma.

Aim

We investigated whether alteration of microbiome using antibiotics affects the development of esophageal adenocarcinoma in a rat model.

Methods

Seven-week-old male Wistar rats which had undergone esophagojejunostomy were divided into control (n = 21) and antibiotic groups (n = 22) at 21 weeks after surgery. Control animals were given drinking water, while the other group was given penicillin G and streptomycin in drinking water until rats were killed at 40 weeks after operation. Incidence rates of Barrett’s esophagus and adenocarcinoma in each group were evaluated by histological analysis. DNA was extracted from a portion of the distal esophagus, and the microbiome was investigated using terminal restriction fragment length polymorphism (T-RFLP) analysis.

Results

All rats in both groups developed Barrett’s esophagus. Incidence of esophageal adenocarcinoma was similar between both groups with a trend to reduced incidence in the antibiotics group (89 % in the control group, 71 % in the antibiotics group, P = 0.365). T-RFLP analysis showed that esophageal microbiome was different between two groups such as the proportion of Lactobacillales was lower in the antibiotics group and Clostridium cluster XIVa and XVIII was higher in the antibiotics group.

Conclusions

Alteration of microbiome does not affect the incidence of esophageal adenocarcinoma. Microbiome may not contribute to the development of esophageal adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rubenstein JH, Shaheen NJ. Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology. 2015;149:302.e1–317.e1.

    Google Scholar 

  2. Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. JAMA. 2013;310:627–636.

    Article  CAS  PubMed  Google Scholar 

  3. Paulson TG, Reid BJ. Focus on Barrett’s esophagus and esophageal adenocarcinoma. Cancer Cell. 2004;6:11–16.

    Article  CAS  PubMed  Google Scholar 

  4. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–771.

    Article  CAS  PubMed  Google Scholar 

  5. Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo W, Ding J, Huang Q, Jerrells T, Deitch EA. Alterations in intestinal bacterial flora modulate the systemic cytokine response to hemorrhagic shock. Am J Physiol. 1995;269:G827–G832.

    CAS  PubMed  Google Scholar 

  8. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.

    Article  CAS  PubMed  Google Scholar 

  9. Miwa K, Sahara H, Segawa M, et al. Reflux of duodenal or gastro-duodenal contents induces esophageal carcinoma in rats. Int J Cancer. 1996;67:269–274.

    Article  CAS  PubMed  Google Scholar 

  10. Miyashita T, Miwa K, Fujimura T, et al. The severity of duodeno-esophageal reflux influences the development of different histological types of esophageal cancer in a rat model. Int J Cancer. 2013;132:1496–1504.

    Article  CAS  PubMed  Google Scholar 

  11. Shen XJ, Rawls JF, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–147.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One. 2014;9:e105592.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagashima K, Hisada T, Sato M, Mochizuki J. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol. 2003;69:1251–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA. 2004;101:4250–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pei Z, Yang L, Peek RM Jr, Levine SM, Pride DT, Blaser MJ. Bacterial biota in reflux esophagitis and Barrett’s esophagus. World J Gastroenterol. 2005;11:7277–7283.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu N, Ando T, Ishiguro K, et al. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus. BMC Infect Dis. 2013;13:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan YP, Chakder S, Gao F, Rattan S. Inducible and neuronal nitric oxide synthase involvement in lipopolysaccharide-induced sphincteric dysfunction. Am J Physiol Gastrointest Liver Physiol. 2001;280:G32–G42.

    CAS  PubMed  Google Scholar 

  20. Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012;18:2138–2144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colleypriest BJ, Ward SG, Tosh D. How does inflammation cause Barrett’s metaplasia? Curr Opin Pharmacol. 2009;9:721–726.

    Article  CAS  PubMed  Google Scholar 

  22. Lee JS, Oh TY, Ahn BO, et al. Involvement of oxidative stress in experimentally induced reflux esophagitis and Barrett’s esophagus: clue for the chemoprevention of esophageal carcinoma by antioxidants. Mutat Res. 2001;480–481:189–200.

    Article  PubMed  Google Scholar 

  23. Konturek PC, Nikiforuk A, Kania J, Raithel M, Hahn EG, Muhldorfer S. Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett’s esophagus: a possible link to the inflammation and overexpression of COX-2, PPARγ and growth factors. Dig Dis Sci. 2004;49:1075–1083.

    Article  CAS  PubMed  Google Scholar 

  24. O’Riordan JM, Abdel-latif MM, Ravi N, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation–metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100:1257–1264.

    Article  PubMed  Google Scholar 

  25. Abdel-Latif MM, Kelleher D, Reynolds JV. Potential role of NF-kappaB in esophageal adenocarcinoma: as an emerging molecular target. J Surg Res. 2009;153:172–180.

    Article  CAS  PubMed  Google Scholar 

  26. Kohata Y, Nakahara K, Tanigawa T, et al. Rebamipide alters the esophageal microbiome and reduces the incidence of Barrett’s esophagus in a rat model. Dig Dis Sci. 2015;60:2654–2661.

    Article  CAS  PubMed  Google Scholar 

  27. Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010;10:403–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prorok-Hamon M, Friswell MK, Alswied A, et al. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 2014;63:761–770.

    Article  CAS  PubMed  Google Scholar 

  30. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? Aliment Pharmacol Ther. 2013;37:1084–1092.

    Article  CAS  PubMed  Google Scholar 

  32. Zaidi AH, Kelly LA, Kreft RE, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2015;16:52.

    Article  Google Scholar 

  33. Garcia JM, Splenser AE, Kramer J, et al. Circulating inflammatory cytokines and adipokines are associated with increased risk of Barrett’s esophagus: a case–control study. Clin Gastroenterol Hepatol. 2014;12:229.e3–238.e3.

    Article  Google Scholar 

  34. Siahpush SH, Vaughan TL, Lampe JN, et al. Longitudinal study of insulin-like growth factor, insulin-like growth factor binding protein-3, and their polymorphisms: risk of neoplastic progression in Barrett’s esophagus. Cancer Epidemiol Biomark Prev. 2007;16:2387–2395.

    Article  CAS  Google Scholar 

  35. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan (No. 15K08957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Fujiwara.

Ethics declarations

Conflict of interest

Dr. Arakawa received lecture fees from Otsuka and Eisai and research grants from Otsuka, Eisai, Astellas, Abbott Japan, Takeda, Dainippon Sumitomo, and Daiichi Sankyo. Dr. Fujiwara received lecture fees from Takeda and research grants from Ono. The remaining authors have no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, A., Fujiwara, Y., Nagami, Y. et al. Alteration of Esophageal Microbiome by Antibiotic Treatment Does Not Affect Incidence of Rat Esophageal Adenocarcinoma. Dig Dis Sci 61, 3161–3168 (2016). https://doi.org/10.1007/s10620-016-4263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4263-6

Keywords

Navigation