Skip to main content
Themenschwerpunkt/Theme Articles

Gewinnt die Psychotherapie durch die neurobiologische Erforschung ihrer Wirkmechanismen?

Published Online:https://doi.org/10.1024/1661-4747.57.2.77

Neurobiologische Befunde legen nahe, dass erfolgreiche Psychotherapien Veränderungen im Gehirn ihrer Patienten bewirken. Entsprechend kann die Veränderung neuronaler Prozesse und Strukturen durch Psychotherapie als neuronales Korrelat psychotherapeutischer Wirkmechanismen betrachtet werden. Was kann die Psychotherapie durch die Berücksichtigung dieser Zusammenhänge und damit durch den Einbezug neurobiologischer Erkenntnisse über Veränderungsprozesse gewinnen? In diesem Beitrag werden mögliche Implikationen und Anwendungen sowie Chancen, Gefahren und Grenzen einer neurobiologischen Sicht auf Wirkfaktoren diskutiert.


Does Psychotherapy Gain From Neurobiological Research on its Mechanisms of Action?

Neurobiological findings suggest that successful psychotherapies bring about changes in the brain. Therefore alterations in brain structures and processes can be seen as the neurobiological correlate of psychotherapeutic working mechanisms. What can psychotherapy gain from research on its neurobiological mechanisms? In this article, possible implications and concrete applications of neurobiological research and findings on processes of change are discussed along with chances, risks and limitations.

Literatur

  • Abel, T. , Kandel, E.R. (1998). Positive and negative regulatory mechanism that mediate long-term memory storage. Brain Research Reviews, 26, 360–378. First citation in articleCrossrefGoogle Scholar

  • Baron, R.M. , Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. First citation in articleCrossrefGoogle Scholar

  • Berger, T. , Caspar, F. (2008). Von anderen Patienten lernen: Konsequenzen neuer Entwicklungen im Internet für webbasierte, psychotherapeutische Angebote. Psychotherapeut, 53, 130–137. First citation in articleCrossrefGoogle Scholar

  • Beutel, M.E. (2002). Neurowissenschaften und Psychotherapie: Neuere Entwicklungen, Methoden und Ergebnisse. Psychotherapeut, 47, 1–10. First citation in articleCrossrefGoogle Scholar

  • Björklund, A. , Lindvall, O. (2000). Self-repair in the brain. Nature, 405, 892–895. First citation in articleCrossrefGoogle Scholar

  • Butnik, S.M. (2005). Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. Journal of Clinical Psychology, 61, 621–625. First citation in articleCrossrefGoogle Scholar

  • Canli, T. , Cooney, R.E. , Goldin, P. , Shah, M. , Sivers, H. , Thomason, M.E. et al. (2005). Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport, 16, 1267–1270. First citation in articleCrossrefGoogle Scholar

  • Caspar, F. (2003). Psychotherapy research and neurobiology: Challenge, chance, or enrichment? Psychotherapy Research, 13, 1–23. First citation in articleCrossrefGoogle Scholar

  • Caspar, F. , Berger, T. (2006). Insight and cognitive psychology. In L. Castonguay, C. Hill (Eds.), Insight in psychotherapy (S. 375–399). Washington: APA. First citation in articleGoogle Scholar

  • Caspar, F. , Koch, K. , Schneider, F. (2004). Psychotherapie und ihre neurobiologischen Voraussetzungen. In W. Senf, M. Broda (Hrsg.), Praxis der Psychotherapie (S. 34–53). Stuttgart: Thieme. First citation in articleGoogle Scholar

  • Cohen, J.D. , Braver, T.S. , Brown, J.W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Current Opinion in Neurobiology, 12, 223–229. First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. , Pizzagalli, D. , Nitschke, J.B. , Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53, 545–574. First citation in articleCrossrefGoogle Scholar

  • deCharms, R.C. , Maeda, F. , Glover, G.H. , Ludlow, D. , Pauly, J.M. , Soneji, D. et al. (2005). Control over brain activation and pain learned by real-time functional MRI. Proceedings of the National Academy of Sciences, 102, 18626–18631. First citation in articleGoogle Scholar

  • DeRubeis, R.J. , Siegle, G.J. , Hollon, S.D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9, 788–796. First citation in articleCrossrefGoogle Scholar

  • Fuchs, T. (2004). Neurobiology and psychotherapy: An emerging dialogue. Current Opinions in Psychiatry, 17, 479–485. First citation in articleCrossrefGoogle Scholar

  • Fuchs, T. (2006). Neuromythologien. Mutmaßungen über die Bewegkräfte der Hirnforschung. Scheidewege. Jahresschrift für skeptisches Denken, 36, 184–202. First citation in articleGoogle Scholar

  • Fuchs, T. , Birbaumer, N. , Lutzenberger, W. , Gruzelier, J.H. , Kaiser, J. (2003). Neurofeedback treatment or attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28, 1–12. First citation in articleCrossrefGoogle Scholar

  • Furmark, T. , Tillfors, M. , Marteinsdottir, I. , Fischer, H. , Pissiota, A. , Langstrom, B. et al. (2002). Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Archives of General Psychiatry, 59, 425–433. First citation in articleCrossrefGoogle Scholar

  • Gabbard, G.O. (2000). A neurobiologically informed perspective of psychotherapy. British Journal of Psychiatry, 177, 117–122. First citation in articleCrossrefGoogle Scholar

  • Gassmann, D. , Grawe, K. (2006). General change mechanisms: The relation between problem activation and resource activation in successful and unsuccessful therapeutic interactions. Journal of Clinical Psychology and Psychotherapy, 13, 1–11. First citation in articleCrossrefGoogle Scholar

  • Gauggel, S. (2006). Neuropsychotherapie: Anmerkungen eines Neuropsychologen. Verhaltenstherapie, 16, 133–138. First citation in articleCrossrefGoogle Scholar

  • Goldapple, K. , Segal, Z. , Garson, C. , Lau, M. , Bieling, P. , Kennedy, S. et al. (2004). Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Archives of General Psychiatry, 61, 34–41. First citation in articleCrossrefGoogle Scholar

  • Grawe, K. (2004). Neuropsychotherapie. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Hofmann, S.G. , Meuret, A.E. , Smits, J.A. , Simon, N.M. , Pollack, M.H. , Eisenmenger, K. et al. (2006). Augmentation of exposure therapy with d-cycloserine for social anxiety disorder. Archives of General Psychiatry, 63, 298–304. First citation in articleCrossrefGoogle Scholar

  • Kandel, E.R. (1998). A new intellectual framework for psychiatry. American Journal of Psychiatry, 155, 457–469. First citation in articleCrossrefGoogle Scholar

  • Kandel, E.R. (1999). Biology and the future of psychoanalysis: A new intellectual framework for psychiatry revisited. American Journal of Psychiatry, 156, 505–524. First citation in articleGoogle Scholar

  • Kandel, E.R. , Schwartz, T.M. , Jessell, T.M. (Hrsg.). (1996). Neurowissenschaften. Heidelberg: Spektrum Akademischer Verlag. First citation in articleGoogle Scholar

  • Kazdin, A.E. , Nock, M.K. (2003). Delineating mechanisms of change in child and adolescent therapy: Methodological issues and research recommendations. Journal of child psychology and psychiatry, and allied disciplines, 44, 1116–1129. First citation in articleCrossrefGoogle Scholar

  • LeDoux, J.E. (2002). Synaptic self: How our brains become who we are. New York: Viking Penguin. First citation in articleGoogle Scholar

  • Liggan, D.Y. , Kay, J. (1999). Some neurobiological aspects of psychotherapy: A review. Journal of Psychotherapy Practice and Research, 8, 103–114. First citation in articleGoogle Scholar

  • McClure, E.B. , Adler, A. , Monk, C.S. , Cameron, J. , Smith, S. , Nelson, E.E. et al. (2007). fMRI predictors of treatment outcome in pediatric anxiety disorders. Psychopharmacology, 191, 97–105. First citation in articleCrossrefGoogle Scholar

  • Misch, D.A. (2000). Psychosocial formulation training using commercial films. Academic Psychiatry, 24, 99–104. First citation in articleCrossrefGoogle Scholar

  • Mühlhauser, I. , Berger, M. (1996). Surrogat-Marker: Trugschlüsse. Deutsches Ärzteblatt, 93, A-3280–3283. First citation in articleGoogle Scholar

  • Orlinsky, D.E. , Grawe, K. , Parks, B.K. (1994). Process and outcome in psychotherapy – noch einmal. In A.E. Bergin, S.L. Garfield (Eds.), Handbook of psychotherapy and behavior change (S. 270–376). New York: Wiley. First citation in articleGoogle Scholar

  • Roffman, J.L. , Marci, C.D. , Glick, D.M. , Dougherty, D.D. , Rauch, S.L. (2005). Neuroimaging and the functional neuroanatomy of psychotherapy. Psychological Medicine, 35, 1385–1398. First citation in articleCrossrefGoogle Scholar

  • Rosen, G.M. , Davison, G.C. (2003). Psychology should list empirically supported principles of change (ESP’s) and not credential trademarked therapies or other treatment packages. Behavior Modification, 27, 300–312. First citation in articleCrossrefGoogle Scholar

  • Schiepek, G. (Hrsg.). (2003). Neurobiologie der Psychotherapie. Stuttgart: Schattauer. First citation in articleGoogle Scholar

  • Schulte, D. (2003). Zur Validität therapeutischer Entscheidungsprozesse. In W. Vollmoeller (Hrsg.), Integrative Behandlung in Psychiatrie und Psychotherapie (S. 89–100). Stuttgart: Schattauer. First citation in articleGoogle Scholar

  • Siegle, G.J. , Carter, C.S. , Thase, M.E. (2006). Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. American Journal of Psychiatry, 163, 735–738. First citation in articleCrossrefGoogle Scholar

  • Siegle, G.J. , Ghinassi, F. , Thase, M.E. (2007). Neurobehavioral therapies in the 21st century: Summary of an emerging field and an extended example of cognitive control training for depression. Cognitive Therapy and Research, 31, 235–262. First citation in articleCrossrefGoogle Scholar

  • Trudeau, D.L. (2005). Applicability of brain wave biofeedback to substance use disorder in adolescents. Child and Adolescent Psychiatric Clinics of North America, 14, 125–136. First citation in articleCrossrefGoogle Scholar

  • Weiskopf, N. , Veit, R. , Erb, M. , Mathiak, K. , Grodd, W. , Goebel, R. et al. (2003). Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. Neuroimage, 19, 577–586. First citation in articleCrossrefGoogle Scholar

  • Znoj, H.J. , Herpertz, S.C. , Mundt, C. (2007). Affektregulation – Stressregulation. In S.C. Herpertz, F. Caspar, C. Mundt (Hrsg.), Störungsorientierte Psychotherapie (S. 157–190). München: Elsevier. First citation in articleGoogle Scholar