Skip to main content
Original Article

WAIS-IV Profiles in First-Ever Unilateral Ischemic Stroke Patients

Published Online:https://doi.org/10.1024/1016-264X/a000104

This study aims to identify WAIS-IV profiles in unilateral ischemic stroke patients in rehabilitation (n = 107) compared to matched controls, to determine if patients demonstrate lateralized cognitive impairment, and to investigate whether aphasia has an additional effect on language and working memory subtests. Analyses revealed impairment in performance of stroke patients relative to controls, while effect of left-hemisphere stroke were large on subtests with language and processing speed demands, and of right-hemisphere stroke on subtests with visuo-spatial and processing speed demands. Aphasia had an additional effect on language, working memory and processing speed subtests. Findings confirm the pattern of cognitive deficits found with older versions of the WAIS and suggest that the WAIS-IV detects cognitive deficits in stroke patients.


Analysen von WAIS-IV-Profilen bei Rehabilitanten nach unilateralem, ischämischen Schlaganfall

Diese Studie analysiert an einer Stichprobe von N = 107 Rehabilitanten mit unilateralen, ischämischen Schlaganfall die Effekte von Lateralisierung und Aphasie auf kognitive Beeinträchtigungen, gemessen mit der WAIS-IV. Im Vergleich zu einer gematchten Kontrollgruppe zeigen die Patienten signifikante Beeinträchtigungen. Hohe Effektstärken ergeben sich bei linkshemisphärischen Schädigungen in Untertests mit Sprach- und Gedächtnisanforderungen und bei rechtshemisphärischen Läsionen in Untertests mit Anforderung an räumlich-visuelle Leistungen und die Verarbeitungsgeschwindigkeit. Eine Aphasie weist einen zusätzlichen Effekt auf Sprach-, Gedächtnis- und Verarbeitungsgeschwindigkeitsleistungen auf. Die Studie bestätigt damit Ergebnisse, die bereits mit vorhergingen Versionen der WAIS gefunden wurden, und zeigt, dass die WAIS-IV zwischen Schlaganfall und Kontrollgruppe trennen kann.

References

  • Andersen, A. L. (1951). The effect of laterality localization of focal brain lesions on the Wechsler-Bellevue subtests. Journal of Clinical Psychology, 7, 149 – 153. First citation in articleCrossrefGoogle Scholar

  • Arbeitsgruppe Bildungsberichterstattung. (2012). Bildung in Deutschland 2012 – Ein indikatorengestützter Bericht mit einer Analyse zur kulturellen Bildung im Lebenslauf. Bielefeld: Bertelsmann Verlag. First citation in articleGoogle Scholar

  • Baldo, J. V. , Dronkers, N. F. , Wilkins, D. , Ludy, C. , Raskin, P. & Kim, J. (2005). Is problem solving dependent on language? Brain and Language, 92, 240 – 250. First citation in articleCrossrefGoogle Scholar

  • Ballard, C. , Rowan, E. , Stephens, S. , Kalaria, R. & Kenny, R. A. (2003). Prospective follow-up study between 3 and 15 months after stroke: Improvements and decline in cognitive function among dementia-free stroke survivors >75 years of age. Stroke, 34, 2440 – 2444. First citation in articleCrossrefGoogle Scholar

  • Benson, N. , Hulac, D. M. & Kranzler, J. H. (2010). Independent Examination of the Wechsler Adult Intelligence Scale – Fourth Edition (WAIS–IV): What Does the WAIS–IV Measure? Psychological Assessment, 22, 121 – 130. First citation in articleCrossrefGoogle Scholar

  • Borz, J. & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler (4. Aufl.). Heidelberg: Springer. First citation in articleCrossrefGoogle Scholar

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, England: Cambridge University Press. First citation in articleGoogle Scholar

  • Cumming, T. B. , Marshall, R. S. & Lazar, R. M. (2013). Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. International Journal of Stroke, 8, 38 – 45. First citation in articleCrossrefGoogle Scholar

  • Daseking, M. & Petermann, F. (2013). Analyse von Querschnittsdaten zur Intelligenzentwicklung im Erwachsenenalter: eine Studie zur deutschsprachigen Version der WAIS-IV. Zeitschrift für Neuropsychologie, 24, 149 – 160. First citation in articleLinkGoogle Scholar

  • Desmond, D. W. , Moroney, J. T. , Sano, M. & Stern, Y. (1996). Recovery of cognitive function after stroke. Stroke, 27, 1798 – 1803. First citation in articleCrossrefGoogle Scholar

  • Fucetola, R. , Connor, L. T. , Strube, M. J. & Corbetta, M. (2009). Unravelling nonverbal cognitive performance in acquired aphasia. Aphasiology, 23, 1418 – 1426. First citation in articleCrossrefGoogle Scholar

  • Heruti, R. J. , Lusky, A. , Dankner, R. , Ring, H. , Dolgopiat, M. , Barell, V. , . . . Adunsky, A. (2002). Rehabilitation outcome of elderly patients after a first stroke: Effect of cognitive status at admission on the functional outcome. Archives of Physical Medicine and Rehabilitation, 83, 742 – 749. First citation in articleCrossrefGoogle Scholar

  • Hochstenbach, J. , Mulder, T. , van Limbeek, J. , Donders, R. & Schoonderwaldt, H. (1998). Cognitive decline following stroke: a comprehensive study of cognitive decline following stroke. Journal of Experimental and Clinical Psychology, 20, 503 – 517. First citation in articleGoogle Scholar

  • Hoffmann, M. (2001). Higher cortical function deficits after stroke: an analysis of 1,000 patients from a dedicated cognitive stroke registry. Neurorehabilitation and Neural Repair, 15, 113 – 127. First citation in articleCrossrefGoogle Scholar

  • Hom, J. & Reitan, R. M. (1990). Generalized cognitive function after stroke. Journal of Clinical and Experimental Neuropsychology, 12, 644 – 654. First citation in articleCrossrefGoogle Scholar

  • Hostenbach, J. , Mulder, T. , Van Limbeek, J. , Donders, R. & Schoonderwaldt, H. (1998). Cognitive decline following stroke: a comprehensive study of cognitive decline following stroke. Journal of Clinical and Experimental Neuropsychology, 20, 503 – 517. First citation in articleCrossrefGoogle Scholar

  • Hyndman, D. , Pickering, R. M. & Ashburn, A. (2008). The influence of attention deficits on functional recovery post stroke during the first 12 months after discharge from hospital. Journal of Neurology, Neurosurgery, and Psychiatry, 79, 656 – 663. First citation in articleCrossrefGoogle Scholar

  • Jahn, T. , Beitlich, D. , Hepp, S. , Knecht, R. , Köhler, K. , Ortner, C. , . . . Kerkhoff, G. (2013). Drei Sozialformen zur Schätzung der (prämobiden) Intelligenzquotienten nach Wechsler. Zeitschrift für Neuropsychologie, 24, 7 – 24. First citation in articleLinkGoogle Scholar

  • Jaillard, A. , Grand, S. , Le Bas, J. F. & Hommel, M. (2010). Predictive cognitive dysfunction in nondemented patients early after stroke. Cerebrovascular Diseases, 29, 415 – 423. First citation in articleCrossrefGoogle Scholar

  • Jaillard, A. , Naegele, B. , Trabucco-Miguel, S. , LeBas, J. F. & Hommel, M. (2009). Hidden dysfunctioning in subacute stroke. Stroke, 40, 2473 – 2479. First citation in articleCrossrefGoogle Scholar

  • Kauhanen, M. L. , Korpelainen, J. T. , Hiltunen, P. , Määttä, R. , Mononen, H. , Brusin, E. , . . . Myllylä, V. V. (2000). Aphasia, depression, and non-verbal cognitive impairment in ischaemic stroke. Cerebrovascular Diseases, 10, 455 – 461. First citation in articleCrossrefGoogle Scholar

  • Keil, K. & Kaszniak, A. W. (2002). Examining executive function in individuals with brain injury: A review. Aphasiology, 16, 305 – 335. First citation in articleCrossrefGoogle Scholar

  • Laures-Gore, J. , Marshall, R. S. & Verner, E. (2010). Performance of individuals with left hemisphere stroke and aphasia and individuals with right brain damage on forward and backward digit span tasks. Aphasiology, 25, 43 – 56. First citation in articleCrossrefGoogle Scholar

  • Linden, T. , Samuelsson, H. , Skoog, I. & Blomstrand, C. (2005). Visual neglect and cognitive impairment in elderly patients late after stroke. Acta Neurologica Scandinavica, 111, 163 – 168. First citation in articleCrossrefGoogle Scholar

  • Linn, M. C. & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479 – 1498. First citation in articleCrossrefGoogle Scholar

  • Loring, D. W. & Bauer, R. M. (2010). Testing the limits: cautions and concerns regarding the new Wechsler IQ and Memory scales. Neurology, 74, 685 – 690. First citation in articleCrossrefGoogle Scholar

  • McCrea, S. M. & Robinson, T. P. (2011). Visual Puzzles, Figure Weights, and Cancellation: Some preliminary hypotheses on the functional and neural substrates of these three new WAIS-IV subtests. International Scholarly Research Network, 2011, 1 – 19. First citation in articleGoogle Scholar

  • McDonnell, M. N. , Bryan, J. , Smith, A. E. & Esterman, A. J. (2011). Assessing cognitive impairment following stroke. Journal of Clinical and Experimental Neuropsychology, 33, 945 – 953. First citation in articleCrossrefGoogle Scholar

  • Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27, 272 – 277. First citation in articleCrossrefGoogle Scholar

  • Montour-Proulx, I. , Braun, C. M. J. , Daigneault, S. , Rouleau, I. , Kuehn, S. & Bégin, J. (2004). Predictors of intellectual function after a unilateral cortical lesion: Study of 635 patients from infancy to adulthood. Journal of Child Neurology, 19, 935 – 943. First citation in articleCrossrefGoogle Scholar

  • Novack, T. A. , Haban, G. , Graham, K. & Satterfield, W. T. (1987). Prediction of stroke rehabilitation outcome from psychologic screening. Archives of Physical Medicine and Rehabilitation, 68, 729 – 734. First citation in articleGoogle Scholar

  • Nys, G. M. , van Zandvoort, M. J. , de Kort, P. L. , Jansen, B. P. , de Haan, E. H. & Kappelle, L. J. (2007). Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovascular Diseases, 23, 408 – 416. First citation in articleCrossrefGoogle Scholar

  • Nys, G. M. , van Zandvoort, M. J. , de Kort, P. L. , Jansen, B. P. , Kappelle, L. J. & de Haan, E. H. (2005). Restrictions of the Mini-Mental State Examination in acute stroke. Archives of Clinical Neuropsychology 20, 623 – 629. First citation in articleCrossrefGoogle Scholar

  • Nys, G. M. , van Zandvoort, M. J. , de Kort, P. L. , van der Worp, H. B. , Jansen, B. P. , Algra, A. , . . . Kappelle, L. J. (2005). The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurology 64, 821 – 827. First citation in articleCrossrefGoogle Scholar

  • Paolucci, S. , Antonucci, G. , Gialloreti, L. E. , Traballesi, M. , Lubich, S. , Pratesi, L. et al. (1996). Predicting stroke inpatient rehabilitation outcome: The prominent role of neuropsychological disorder. European Neurology, 36, 385 – 390. First citation in articleCrossrefGoogle Scholar

  • Patel, M. , Coshall, C. , Rudd, A. G. & Wolfe, C. D. (2003). Natural history of cognitive impairment after stroke and factors associated with its recovery. Clinical Rehabilitation, 17, 158 – 166. First citation in articleCrossrefGoogle Scholar

  • Pendlebury, S. T. , Cuthbertson, F. C. , Welch, S. J. V. , Mehta, Z. & Rothwell, P. M. (2010). Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: A population-based study. Stroke, 41, 1290 – 1293. First citation in articleCrossrefGoogle Scholar

  • Petermann, F. (Hrsg.) (2012). Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV). Deutsche Version. Frankfurt: Pearson Assessment. First citation in articleGoogle Scholar

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3 – 25. First citation in articleCrossrefGoogle Scholar

  • Pulsipher, D. T. , Stricker, N. H. , Sadek, J. R. & Haaland, K. Y. (2013). Clinical utility of the Neuropsychological Assessment Battery (NAB) after unilateral stroke. The Clinical Neuropsychologist, 27, 1 – 22. First citation in articleCrossrefGoogle Scholar

  • Rasquin, S. M. , Lodder, J. , Ponds, R. W. , Winkens, I. , Jolles, J. & Verhey, F. R. (2004). Cognitive functioning after stroke: a one-year follow-up study. Dementia and Geriatric Cognitive Disorders, 18, 138 – 144. First citation in articleCrossrefGoogle Scholar

  • Riepe, M. W. , Riss, S. , Bittner, D. & Huber, R. (2004). Screening for cognitive impairment in patients with acute stroke. Dementia and Geriatric Cognitive Disorders, 17, 49 – 53. First citation in articleCrossrefGoogle Scholar

  • Ryan, J. J. , Bartels, J. M. , Morris, J. , Cluff, R. B. & Gontkovsky, S. T. (2009). WAIS-III VIQ–PIQ and VCI–POI discrepancies in lateralized cerebral damage. International Journal of Neuroscience, 119, 1198 – 1209. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403 – 428. First citation in articleCrossrefGoogle Scholar

  • Skidmore, E. R. , Whyte, E. M. , Holm, M. B. , Becker, J. T. , Butters, M. A. , Dew, M. A. , . . . Lenze, E. J. (2010). Cognitive and affective predictors of rehabilitation participation after stroke. Archives of Physical Medicine and Rehabilitation, 91, 203 – 207. First citation in articleCrossrefGoogle Scholar

  • Srikanth, V. K. , Thrift, A. G. , Saling, M. M. , Anderson, J. F. , Dewey, H. M. , Macdonell, R. A. & Donnan, G. A. (2003). Increased risk of cognitive impairment 3 months after mild to moderate first-ever stroke: a Community-Based Prospective Study of Nonaphasic English-Speaking Survivors. Stroke, 34, 1136 – 1143. First citation in articleCrossrefGoogle Scholar

  • Stricker, N. H. , Tybur, J. M. , Sadek, J. R. & Haaland, K. Y. (2010). Utility of the Neuropsychological Assessment Battery in detecting cognitive impairment after unilateral stroke. Journal of the International Neuropsychological Society, 16, 813 – 821. First citation in articleCrossrefGoogle Scholar

  • Tatemichi, T. K. , Desmond, D. W. , Stern, Y. , Paik, M. , Sano, M. & Bagiella, E. (1994). Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilties. Journal of Neurology, Neurosurgery & Psychiatry, 20, 503 – 517. First citation in articleGoogle Scholar

  • Treisman, A. & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97 – 136. First citation in articleCrossrefGoogle Scholar

  • Viscogliosi, C. , Desrosiers, J. , Belleville, S. , Caron, C. D. , Ska, B. & Group, B. (2011). Differences in Participation According to Specific Cognitive Deficits Following a Stroke. Applied Neuropsychology, 18, 117 – 126. First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (2008). Wechsler Adult Intelligence Scale-IV. San Antonio, TX: The Psychological Corporation. First citation in articleGoogle Scholar

  • Wechsler, D. , Coalson, D. L. & Raiford, S. E. (2008). WAIS-IV technical and interpretive manual. San Antonio, TX: Pearson. First citation in articleGoogle Scholar

  • Wilde, M. C. (2010). Lesion location and repeatable battery for the assessment of neuropsychological status performance in acute ischemic stroke. The Clinical Neuropsychologist, 24, 57 – 69. First citation in articleCrossrefGoogle Scholar