Skip to main content

Pain Modulation and the Transition from Acute to Chronic Pain

  • Chapter
  • First Online:
Translational Research in Pain and Itch

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 904))

Abstract

There is now increasing evidence that pathological pain states are at least in part driven by changes in the brain itself. Descending modulatory pathways are known to mediate top-down regulation of nociceptive processing, transmitting cortical and limbic influences to the dorsal horn. However, these modulatory pathways are also intimately intertwined with ascending transmission pathways through positive and negative feedback loops. Models of persistent pain that fail to include descending modulatory pathways are thus incomplete. Although teasing out individual links in a recurrent network is never straightforward, it is imperative that understanding of pain modulation be fully integrated into how we think about pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amit Z, Galina ZH. Stress induced analgesia plays an adaptive role in the organization of behavioral responding. Brain Res Bull. 1988;21:955–8.

    Article  CAS  PubMed  Google Scholar 

  • Baez MA, Brink TS, Mason P. Roles for pain modulatory cells during micturition and continence. J Neurosci. 2005;25:384–94.

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Keay KA. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res. 1996;107:285–300.

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Keay KA, Floyd N, Price J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull. 2000a;53:95–104.

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Price JL, Keay KA. Brain mediation of active and passive emotional coping. Prog Brain Res. 2000b;122:333–49.

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Tr Neurosci. 1994;17:379–89.

    Article  CAS  Google Scholar 

  • Barbaro NM. Studies of PAG/PVG stimulation for pain relief in humans. Prog Brain Res. 1988;77:165–73.

    Article  CAS  PubMed  Google Scholar 

  • Barbaro NM, Heinricher MM, Fields HL. Putative nociceptive modulatory neurons in the rostral ventromedial medulla of the rat display highly correlated firing patterns. Somatosens Mot Res. 1989;6:413–25.

    Article  CAS  PubMed  Google Scholar 

  • Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol. 1995;46:575–605.

    Article  CAS  PubMed  Google Scholar 

  • Bingel U, Tracey I. Imaging CNS modulation of pain in humans. Physiology. 2008;23:371–80.

    Article  PubMed  Google Scholar 

  • Brink TS, Pacharinsak C, Khasabov SG, Beitz AJ, Simone DA. Differential modulation of neurons in the rostral ventromedial medulla by neurokinin-1 receptors. J Neurophysiol. 2012;107:1210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budai D, Khasabov SG, Mantyh PW, Simone DA. NK-1 receptors modulate the excitability of ON cells in the rostral ventromedial medulla. J Neurophysiol. 2007;97:1388–95.

    Article  CAS  PubMed  Google Scholar 

  • Carlson JD, Maire JJ, Martenson ME, Heinricher MM. Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci. 2007;27:13222–31.

    Article  CAS  PubMed  Google Scholar 

  • Casey KL, Morrow TJ. Supraspinal nocifensive responses of cats: spinal cord pathways, monoamines, and modulation. J Comp Neurol. 1988;270:591–605.

    Article  CAS  PubMed  Google Scholar 

  • Casey KL, Morrow TJ. Effect of medial bulboreticular and raphe nuclear lesions on the excitation and modulation of supraspinal nocifensive behaviors in the cat. Brain Res. 1989;501:150–61.

    Article  CAS  PubMed  Google Scholar 

  • Cleary DR, Heinricher MM. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation. Pain. 2013;154:845–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dampney RA. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol. 2015;309:R429–43.

    Article  CAS  PubMed  Google Scholar 

  • De Felice M, Eyde N, Dodick D, Dussor GO, Ossipov MH, Fields HL, Porreca F. Capturing the aversive state of cephalic pain preclinically. Ann Neurol. 2013;74:257–65.

    PubMed  PubMed Central  Google Scholar 

  • De Felice M, Sanoja R, Wang R, Vera-Portocarrero L, Oyarzo J, King T, Ossipov MH, Vanderah TW, Lai J, Dussor GO, Fields HL, Price TJ, Porreca F. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152:2701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devonshire IM, Kwok CH, Suvik A, Haywood AR, Cooper AH, Hathway GJ. A quantification of the relationship between neuronal responses in the rat rostral ventromedial medulla and noxious stimulation-evoked withdrawal reflexes. Eur J Neurosci. 2015;42:1726–37.

    Article  CAS  PubMed  Google Scholar 

  • DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav. 2002;71:469–80.

    Article  CAS  PubMed  Google Scholar 

  • DiMicco JA, Sarkar S, Zaretskaia MV, Zaretsky DV. Stress-induced cardiac stimulation and fever: common hypothalamic origins and brainstem mechanisms. Auton Neurosci. 2006;126–127:106–19.

    Article  PubMed  Google Scholar 

  • Fanselow MS. The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. In: DePaulis A, Bandler R, editors. The midbrain periaqueductal gray matter. New York: Plenum; 1991. p. 151–73.

    Chapter  Google Scholar 

  • Fardin V, Oliveras JL, Besson JM. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Brain Res. 1984;306:105–23.

    Article  CAS  PubMed  Google Scholar 

  • Foo H, Mason P. Discharge of raphe magnus ON and OFF cells is predictive of the motor facilitation evoked by repeated laser stimulation. J Neurosci. 2003;23:1933–40.

    CAS  PubMed  Google Scholar 

  • Foo H, Mason P. Sensory suppression during feeding. Proc Natl Acad Sci U S A. 2005;102:16865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Guo W, Robbins MT, Dubner R, Ren K. Changes in AMPA receptor phosphorylation in the rostral ventromedial medulla after inflammatory hyperalgesia in rats. Neurosci Lett. 2004;366:201–5.

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Guo W, Zou S-P, Dubner R, Ren K. Inflammation-induced upregulation of AMPA receptor subunit expression in brain stem pain modulatory circuitry. Pain. 2003;104:401–13.

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Terayama R, Dubner R, Ren K. Plasticity in excitatory amino acid receptor-mediated descending pain modulation after inflammation. J Pharmacol Exp Ther. 2002;300:513–20.

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Barbaro NM, Fields HL. Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens Mot Res. 1989;6:427–39.

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Fields HL. Central nervous system mechanisms of pain modulation. In: McMahon S, Koltzenburg M, Tracey I, Turk DC, editors. Wall and Melzack’s textbook of pain. 6th ed. London: Elsevier; 2013. p. 129–42.

    Google Scholar 

  • Heinricher MM, Ingram SL. The brainstem and nociceptive modulation. In: Bushnell MC, Basbaum AI, editors. The science of pain. San Diego: Academic; 2008. p. 593–626.

    Google Scholar 

  • Heinricher MM, Kaplan HJ. GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain. 1991;47:105–13.

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol. 2004;92:1982–9.

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60:214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellman KM, Brink TS, Mason P. Activity of murine raphe magnus cells predicts tachypnea and on-going nociceptive responsiveness. J Neurophysiol. 2007;98:3121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellman KM, Mason P. Opioids disrupt Pro-nociceptive modulation mediated by raphe Magnus. J Neurosci. 2012;32:13668–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman AM, Kuypers HG, Verburgh CA. Quantitative differences in collateralization of the descending spinal pathways from red nucleus and other brain stem cell groups in rat as demonstrated with the multiple fluorescent retrograde tracer technique. Brain Res. 1981;209:271–86.

    Article  CAS  PubMed  Google Scholar 

  • Hurley RW, Hammond DL. The analgesic effects of supraspinal μ and δ opioid receptor agonists are potentiated during persistent inflammation. J Neurosci. 2000;20:1249–59.

    CAS  PubMed  Google Scholar 

  • Hurley RW, Hammond DL. Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal μ opioid receptor agonists after inflammatory injury. J Neurosci. 2001;21:2536–45.

    CAS  PubMed  Google Scholar 

  • Imbe H, Iwai-Liao Y, Senba E. Stress-induced hyperalgesia: animal models and putative mechanisms. Front Biosci. 2006;11:2179–92.

    Article  CAS  PubMed  Google Scholar 

  • Jinks SL, Carstens EE, Antognini JF. Glutamate receptor blockade in the rostral ventromedial medulla reduces the force of multisegmental motor responses to supramaximal noxious stimuli. Neurosci Lett. 2007;426:175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khasabov SG, Brink TS, Schupp M, Noack J, Simone DA. Changes in response properties of rostral ventromedial medulla neurons during prolonged inflammation: modulation by neurokinin-1 receptors. Neuroscience. 2012;224:235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol. 2006;95:33–41.

    Article  PubMed  Google Scholar 

  • King CD, Devine DP, Vierck CJ, Mauderli A, Yezierski RP. Opioid modulation of reflex versus operant responses following stress in the rat. Neuroscience. 2007;147:174–82.

    Article  CAS  PubMed  Google Scholar 

  • King CD, Devine DP, Vierck CJ, Rodgers J, Yezierski RP. Differential effects of stress on escape and reflex responses to nociceptive thermal stimuli in the rat. Brain Res. 2003;987:214–22.

    Article  CAS  PubMed  Google Scholar 

  • King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12:1364–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovelowski CJ, Ossipov MH, Sun H, Lai J, Malan TP, Porreca F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain. 2000;87:265–73.

    Article  CAS  PubMed  Google Scholar 

  • LaGraize SC, Borzan J, Rinker MM, Kopp JL, Fuchs PN. Behavioral evidence for competing motivational drives of nociception and hunger. Neurosci Lett. 2004;372:30–4.

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci. 2008;28:11642–9.

    Article  CAS  PubMed  Google Scholar 

  • Leong ML, Gu M, Speltz-Paiz R, Stahura EI, Mottey N, Steer CJ, Wessendorf M. Neuronal loss in the rostral ventromedial medulla in a rat model of neuropathic pain. J Neurosci. 2011;31:17028–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung CG, Mason P. Physiological properties of raphe magnus neurons during sleep and waking. J Neurophysiol. 1999;81:584–95.

    CAS  PubMed  Google Scholar 

  • Lovick TA. Integrated activity of cardiovascular and pain regulatory systems: role in adaptive behavioural responses. Prog Neurobiol. 1993;40:631–44.

    Article  CAS  PubMed  Google Scholar 

  • Lovick TA. The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness? Exp Physiol. 1997;82:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain. 2009;142:236–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason P. From descending pain modulation to obesity via the medullary raphe. Pain. 2011;152:S20–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason P, Fields HL. Axonal trajectories and terminations of on- and off-cells in the cat lower brainstem. J Comp Neurol. 1989;288:185–207.

    Article  CAS  PubMed  Google Scholar 

  • McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ. Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol. 2010;109:27–33.

    Article  PubMed  Google Scholar 

  • Millecamps M, Centeno MV, Berra HH, Rudick CN, Lavarello S, Tkatch T, Apkarian AV. D-Cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. Pain. 2007;132:108–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MM, Carrive P. Activation of the ventrolateral periaqueductal gray reduces locomotion but not mean arterial pressure in awake, freely moving rats. Neuroscience. 2001;102:905–10.

    Article  CAS  PubMed  Google Scholar 

  • Morrison SF. Central neural pathways for thermoregulatory cold defense. J Appl Physiol. 2011;110:1137–49 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nason Jr MW, Mason P. Medullary Raphe Neurons Facilitate Brown Adipose Tissue Activation. J Neurosci. 2006;26:1190–8.

    Article  CAS  PubMed  Google Scholar 

  • Oliveras JL, Martin G, Montagne J, Vos B. Single unit activity at ventromedial medulla level in the awake, freely moving rat: effects of noxious heat and light tactile stimuli onto convergent neurons. Brain Res. 1990;506:19–30.

    Article  CAS  PubMed  Google Scholar 

  • Pacharinsak C, Khasabov SG, Beitz AJ, Simone DA. NK-1 receptors in the rostral ventromedial medulla contribute to hyperalgesia produced by intraplantar injection of capsaicin. Pain. 2008;139:34–46.

    Article  CAS  PubMed  Google Scholar 

  • Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol. 2012;108:2393–404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Tr Neurosci. 2002;25:319–25.

    Article  CAS  Google Scholar 

  • Proudfit HK. Reversible inactivation of raphe magnus neurons: effects on nociceptive threshold and morphine-induced analgesia. Brain Res. 1980;201:459–64.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Vanegas H. Tooth pulp stimulation advances both medullary off-cell pause and tail flick. Neurosci Lett. 1989;100:153–6.

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Dubner R. Descending modulation in persistent pain: an update. Pain. 2002;100:1–6.

    Article  PubMed  Google Scholar 

  • Reynolds DV. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science. 1969;154:444–5.

    Article  Google Scholar 

  • Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F. Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain. 2010;14:120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schepers RJ, Mahoney JL, Shippenberg TS. Inflammation-induced changes in rostral ventromedial medulla mu and kappa opioid receptor mediated antinociception. Pain. 2008;136:320–30.

    Article  CAS  PubMed  Google Scholar 

  • Sykes KT, White SR, Hurley RW, Mizoguchi H, Tseng LF, Hammond DL. Mechanisms responsible for the enhanced antinociceptive effects of m-opioid receptor agonists in the rostral ventromedial medulla of male rats with persistent inflammatory pain. J Pharmacol Exp Ther. 2007;322:813–21.

    Article  CAS  PubMed  Google Scholar 

  • Terayama R, Guan Y, Dubner R, Ren K. Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. Neuroreport. 2000;11:1915–9.

    Article  CAS  PubMed  Google Scholar 

  • Tracey I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat Med. 2010;16:1277–83.

    Article  CAS  PubMed  Google Scholar 

  • Vianna DM, Allen C, Carrive P. Cardiovascular and behavioral responses to conditioned fear after medullary raphe neuronal blockade. Neuroscience. 2008;153:1344–53.

    Article  CAS  PubMed  Google Scholar 

  • Wagner KM, Roeder Z, Desrochers K, Buhler AV, Heinricher MM, Cleary DR. The dorsomedial hypothalamus mediates stress-induced hyperalgesia and is the source of the pronociceptive peptide cholecystokinin in the rostral ventromedial medulla. Neuroscience. 2013;238:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker P, Carrive P. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience. 2003;116:897–912.

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Mayer DJ. Organization of endogenous opiate and nonopiate pain control systems. Science. 1982;216:1185–92.

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Wiertelak EP, Goehler LE, Mooney-Heiberger K, Martinez J, Furness L, Smith KP, Maier SF. Neurocircuitry of illness-induced hyperalgesia. Brain Res. 1994;639:283–99.

    Article  CAS  PubMed  Google Scholar 

  • Willer JC, Boureau F, Albe-Fessard D. Supraspinal influences on nociceptive flexion reflex and pain sensation in man. Brain Res. 1979;179:61–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Kim CJ, Neubert MJ, Heinricher MM. NMDA receptor-mediated activation of medullary pro-nociceptive neurons is required for secondary thermal hyperalgesia. Pain. 2007;127:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EG, Watkins LR, Mayer DJ. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia. Brain Res. 1984;290:119–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The laboratory is funded by grants from the National Institutes of Health (NS082020 and NS066159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Heinricher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinricher, M.M. (2016). Pain Modulation and the Transition from Acute to Chronic Pain. In: Ma, C., Huang, Y. (eds) Translational Research in Pain and Itch. Advances in Experimental Medicine and Biology, vol 904. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7537-3_8

Download citation

Publish with us

Policies and ethics