Skip to main content

Dormancy and Metastasis of Melanoma Cells to Lymph Nodes, Lung and Liver

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 1

Abstract

Hematogenous and lymph node metastasis of melanoma cells is a major cause of death in the United States and Canada. Melanoma cells have a propensity for spreading to lymph nodes via the lymphatics. However, little is known about regional growth patterns of draining lymph node metastases arising from dermal melanomas. In a mouse model, by 10–14 days following intradermal injection, melanoma cells were replicating as discrete, evenly spaced lymph node metastases. When the injection site was excised at 4 days post intradermal injection, neither primary dermal tumors nor lymph node metastases were observed, indicating that metastasizing cells did not come directly from the initial injection and that the primary dermal tumor was required for lymph node metastases. While 23.1% of melanoma cells were proliferating in the lymph node, only 0.9% of these cells were undergoing apoptosis. We never observed metastasizing cancer cells replicating in blood or lymphatic vessels. When melanoma cells undergo hematogenous metastasis after portal vein injection, they are initially arrested in the liver by size constraints. However, they extravasate as an active process involving pseudopodial projections; during this process the vasculature remains intact. The metastasizing cells can then migrate to preferred sites for replication. In the lung, after intravenous injection, melanoma cells become arrested by size constraint at sites directly proportional to the available lung volume. By 10 days post injection, cancer cell replication preferentially occurs at the lung surface with 80% coverage. The vast majority of single, extravasated melanoma cells in the lung and liver are dormant. However, metastatic efficiency and dormancy of melanoma cells can vary widely with the melanoma cell line injected and/or the organ involved. The percentage of inoculated cells that remain as single, dormant cells at 2 weeks post inoculation is tenfold higher for B16F1 cells in liver compared with B16F10 cells in the lung. In contrast, metastatic efficiency of B16 F10 cells in lung is >500-fold higher than for B16F1 cells in liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Botella-Estrada R, Dasi F, Ramos D, Nagore E, Herrero M, Gimenez J, Fuster C, Sanmartin O, Guillen C, Alino S (2005) Cytokine expression and dendritic cell density in melanoma sentinal nodes. Melanoma Res 15:99–106

    Article  CAS  PubMed  Google Scholar 

  • Brody J, Costantino C, Berger A, Sato T, Lisanti M, Yeo C, Emmons R, Witkiewicz A (2009) Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 8:1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Cameron M, Schmidt E, Kerkvliet N, Nadkarni K, Morris V, Groom A, Chambers A, MacDonald I (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60:2541–2546

    CAS  PubMed  Google Scholar 

  • Connolly K, Bogdanffy M (1993) Evaluation of proliferating cell nuclear antigen (PCNA) as an endogenous marker of cell proliferation in rat liver: a dual-stain comparison with 5-bromo-2′-deoxyuridine. J Histochem Cytochem 41:1–6

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Vacca A, Ribatti D (2004) Setting the stage: an anatomist’s view of the immune system. Trends Immunol 25:210–217

    Article  CAS  PubMed  Google Scholar 

  • Dadras S, Paul T, Bertoncini J, Brown L, Muzikansky A, Jackson D, Ellwanger U, Garbe C, Mihn M, Detmar M (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162:1951–1960

    Article  PubMed  Google Scholar 

  • Diepgen T, Mahler V (2002) The epidemiology of skin cancer. Br J Dermatol 146(Suppl61):1–6

    Article  PubMed  Google Scholar 

  • Duff M, Stapleton P, Mestre J, Maddali S, Smyth G, Yan Z, Freeman T, Daly J (2003) Cyclooxygenase-2 inhibition improves macrophage function in melanoma and increases the antineoplastic activity of interferon. Ann Surg Oncol 10:305–313

    Article  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Blanchi R, Orabona C, Spreca A, Floretti M, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Foley J, Dietrich D, Swenberg J, Maronpot R (1991) Detection and evaluation of proliferating cell nuclear antigen (PCNA) in rat tissue by an improved immunohistochemical procedure. J Histotechnol 14:237–241

    CAS  Google Scholar 

  • Hangan D, Morris V, Boeters L, Von Ballestrem C, Uniyal S, Chan B (1997) An epitope on VLA-6 (alpha 6 beta1) integrin involved in migration but not adhesion is required for extravasation of murine melanoma B16F1 cells in liver. Cancer Res 57:3812–3817

    CAS  PubMed  Google Scholar 

  • Hedley B, Vaidya K, Phadke P, MacKenzie L, Dales D, Postenka C, MacDonald I, Chambers A (2008) BRMS1 Suppresses breast cancer metastasis in multiple experimental models of metastasis by reducing solitary cell survival and inhibiting growth initiation. Clin Exp Metastasis 25:727–740

    Article  CAS  PubMed  Google Scholar 

  • Kim A, Lim J-S (2007) Methyselenol generated from selenomethionine and methioninase induces apoptosis and blocks metastasis of melanoma. Women Health 3:17–21

    CAS  Google Scholar 

  • Kirstein J, Graham K, MacKenzie L, Johnston D, Martin L, Tuck A, MacDonald I, Chambers A (2009) Effect of anti-fibrinolytic therapy on experimental melanoma metastasis. Clin Exp Metastasis 26:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kobayashi H, Pollard R, Suzuki F (1998) A pathogenic role of Th2 cells and their cytokine products on pulmonary metastasis of murine B16 melanoma. J Immunol 160:5869–5873

    CAS  PubMed  Google Scholar 

  • Kurumbail R, Stevens A, Gierse J, McDonald J, Stegeman R, Pak J, Gildehaus D, Miyashiro J, Penning T, Seibert K, Isakson P, Stallings W (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648

    Article  CAS  PubMed  Google Scholar 

  • Lebedis C, Chen K, Fallavollita L, Boutros T, Brodt P (2002) Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-1 and EGF. Int J Cancer 100:2–8

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Torisu-Itakara H, Cochran A, Kadison A, Huynh Y, Morton D, Essner R (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinal nodes. Clin Cancer Res 11:107–112

    CAS  PubMed  Google Scholar 

  • Luzzi K, MacDonald I, Schmidt E, Kerkvliet N, Morris V, Chambers A, Groom A (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    Article  CAS  PubMed  Google Scholar 

  • MacDonald I, Groom A, Chambers A (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24:885–893

    Article  CAS  PubMed  Google Scholar 

  • Malaponte G, Zacchia A, Bevelacqua Y, Marconi A, Perrotta R, Mazzarino M, Cardile V, Stivala F (2010) Co-regulated expression of matrix metalloproteinase-2 and transforming growth factor-beta in melanoma development and progression. Oncol Rep 24:81–87

    Article  CAS  PubMed  Google Scholar 

  • Morris V, Schmidt E, MacDonald I, Groom A, Chambers A (1997) Sequential steps in hematogenous metastasis of cancer cells studied by in vivo videomicroscopy. Invasion Metastasis 17:281–296

    CAS  PubMed  Google Scholar 

  • Munn D, Sharma M, Hou D, Baban B, Lee J, Antonia S, Messina J, Chandler P, Koni P, Mellor A (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    CAS  PubMed  Google Scholar 

  • Munn D, Sharma M, Baban B, Harding H, Zhang Y, Ron D, Mellor A (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    Article  CAS  PubMed  Google Scholar 

  • Naumov G, Townson J, MacDonald I, Wilson S, Bramwell V, Groom A, Chambers A (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206

    Article  CAS  PubMed  Google Scholar 

  • Nip J, Shibata H, Loskutoff D, Cheresh D, Brodt P (1992) Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin. J Clin Invest 90:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Polak M, Borthwick N, Gabriel F, Johnson P, Higgins B, Hurren J, McCormick D, Jager M, Cree I (2007) Mechanisms of local immunosuppression in cutaneous melanoma. Br J Cancer 96:1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Prendergast G (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27:3889–3900

    Article  CAS  PubMed  Google Scholar 

  • Ratheesh A, Ingle A, Gude R (2007) Pentoxifylline modulates cell surface integrin expression and integrin mediated adhesion of B16F10 cells to extracellular matrix components. Cancer Biol Ther 6:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Reilly J, Nash J, Mackie M, McVerry B (1985) Distribution of fibronectin and laminin in normal and pathological lymphoid tissue. J Clin Pathol 38:849–854

    Article  CAS  PubMed  Google Scholar 

  • Schietroma C, Clanfarani F, Lacal P, Odorisio T, Orecchia A, Kanitakis J, D’Atri S, Failla C, Zambruno G (2003) Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 98:789–797

    Article  CAS  PubMed  Google Scholar 

  • Smith W, Dewitt D (1996) Prostaglandin endoperoxide H synthases-1 and -2. Adv Immunol 62:167–215

    Article  CAS  PubMed  Google Scholar 

  • Trites J, Yoo J, Taylor M, Schmidt E, Morris V, MacDonald I, Chambers A, Groom A (2000) Lymph node metastasis in malignant melanoma: an in vivo animal model. J Otolaryngol 29:233–238

    CAS  PubMed  Google Scholar 

  • Willard-Mack C (2006) Normal structure, function, and histology of lymph nodes. Toxicol Pathol 34:409–424

    Article  PubMed  Google Scholar 

  • Wiman K (2010) Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 29:4245–4252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Morris Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morris, V.L., Percy, D.B., Lizardo, M.M., Chambers, A.F., MacDonald, I.C. (2013). Dormancy and Metastasis of Melanoma Cells to Lymph Nodes, Lung and Liver. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_6

Download citation

Publish with us

Policies and ethics