Skip to main content

Chronological Aging in Saccharomyces cerevisiae

  • Chapter
  • First Online:
Aging Research in Yeast

Part of the book series: Subcellular Biochemistry ((SCBI,volume 57))

Abstract

The two paradigms to study aging in Saccharomyces cerevisiae are the chronological life span (CLS) and the replicative life span (RLS). The chronological life span is a measure of the mean and maximum survival time of non-dividing yeast populations while the replicative life span is based on the mean and maximum number of daughter cells generated by an individual mother cell before cell division stops irreversibly. Here we review the principal discoveries associated with yeast chronological aging and how they are contributing to the understanding of the aging process and of the molecular mechanisms that may lead to healthy aging in mammals. We will focus on the mechanisms of life span regulation by the Tor/Sch9 and the Ras/adenylate cyclase/PKA pathways with particular emphasis on those implicating age-dependent oxidative stress and DNA damage/repair .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O et al (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    Article  PubMed  CAS  Google Scholar 

  • Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:9100–9105

    Article  PubMed  CAS  Google Scholar 

  • Barker MG, Walmsley RM (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166:765–777

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  PubMed  CAS  Google Scholar 

  • Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270

    Article  PubMed  CAS  Google Scholar 

  • Busuttil RA, Garcia AM, Cabrera C, Rodriguez A, Suh Y et al (2005) Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res 65:11271–11275

    Article  PubMed  CAS  Google Scholar 

  • Castelein N, Hoogewijs D, De Vreese A, Braeckman BP, Vanfleteren JR (2008) Dietary restriction by growth in axenic medium induces discrete changes in the transcriptional output of genes involved in energy metabolism in Caenorhabditis elegans. Biotechnol J 3:803–812

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  PubMed  CAS  Google Scholar 

  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    Article  PubMed  CAS  Google Scholar 

  • D’Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C et al (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  • Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171:37–42

    PubMed  CAS  Google Scholar 

  • Enns LC, Morton JF, Treuting PR, Emond MJ, Wolf NS et al (2009) Disruption of protein kinase A in mice enhances healthy aging. PLoS One 4:e5963

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P et al (2010), Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6(8):1227–1228

    Google Scholar 

  • Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL et al (2004a) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C et al (2005a) Sir2 blocks extreme life-span extension. Cell 123:655–667

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Li L, Longo VD (2005b) Analysis of gene expression profile in yeast aging chronologically. Mech Ageing Dev 126:11–16

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Liou LL, Moy VN, Diaspro A, Selverstone-Valentine J et al (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163:35–46

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2007) The chronological life span of Saccharomyces cerevisiae. Meth Mol Biol 371:89–95

    Article  CAS  Google Scholar 

  • Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004b) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    PubMed  CAS  Google Scholar 

  • Guevara-Aguirre J et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3(70):70ra13

    Article  PubMed  CAS  Google Scholar 

  • Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F et al (2007) Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282:32844–32855

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ et al (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  • Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J (2003) Aging and genome maintenance: lessons from the mouse? Science 299:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588

    Article  PubMed  CAS  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  PubMed  CAS  Google Scholar 

  • Hu D, Cao P, Thiels E, Chu CT, Wu GY et al (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384

    Article  PubMed  CAS  Google Scholar 

  • Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58:291–296

    Article  PubMed  Google Scholar 

  • Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  PubMed  CAS  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NRJ, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127:1985–1993

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Ladiges W, Van Remmen H, Strong R, Ikeno Y, Treuting P et al (2009) Lifespan extension in genetically modified mice. Aging Cell 8:346–352

    Article  PubMed  CAS  Google Scholar 

  • LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–1073

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583

    PubMed  CAS  Google Scholar 

  • Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – a comparison. Exp Gerontol 41:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Lin YY, Lu JY, Zhang J, Walter W, Dang W et al (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136:1073–1084

    Article  PubMed  CAS  Google Scholar 

  • Longo V (1997) The chronological life span of Saccharomyces cerevisiae. Studies of superoxide dismutase, Ras and Bcl-2. Thesis, University of California, Los Angeles, CA

    Google Scholar 

  • Longo VD (2009) Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44:70–74

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Fabrizio P (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59:903–908

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians. Science 299:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126:257–268

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Lieber MR, Vijg J (2008) Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol 9:903–910

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131–142

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872

    Article  PubMed  CAS  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T et al (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660

    Article  PubMed  CAS  Google Scholar 

  • Madia F, Gattazzo C, Fabrizio P, Longo VD (2007) A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 128(1):45–49

    Article  PubMed  CAS  Google Scholar 

  • Madia F, Gattazzo C, Wei M, Fabrizio P, Burhans WC et al (2008) Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J Cell Biol 180:67–81

    Article  PubMed  CAS  Google Scholar 

  • Madia F, Wei M, Yuan V, Hu J, Gattazzo C et al (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186:509–523

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754

    Article  PubMed  CAS  Google Scholar 

  • McElwee JJ, Schuster E, Blanc E, Thornton J, Gems D (2006) Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mech Ageing Dev 127:458–472

    Article  PubMed  CAS  Google Scholar 

  • Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007) MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5:e261

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phospatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhbditis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK (1959) Life span of individual yeast cells. Nature 183:1751–1752

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Pages V, Bresson A, Acharya N, Prakash S, Fuchs RP et al (2008) Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180:73–82

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1:131–145

    PubMed  CAS  Google Scholar 

  • Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer GP (2000) p53 mutational spectra and the role of methylated CpG sequences. Mutat Res 450:155–166

    Article  PubMed  CAS  Google Scholar 

  • Pinkston JM, Garigan D, Hansen M, Kenyon C (2006) Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313:971–975

    Article  PubMed  CAS  Google Scholar 

  • Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–218

    Article  PubMed  CAS  Google Scholar 

  • Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518

    Article  PubMed  CAS  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras [see comments]. Nature 370:527–532

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  PubMed  CAS  Google Scholar 

  • Rohde JR, Bastidas R, Puria R, Cardenas ME (2008) Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 11:153–160

    Article  PubMed  CAS  Google Scholar 

  • Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P et al (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5:e1000408

    Article  PubMed  CAS  Google Scholar 

  • Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5:345–357

    Article  PubMed  CAS  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE et al (2005) Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911

    Google Scholar 

  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Skeen JE, Bhaskar PT, Chen CC, Chen WS, Peng XD et al (2006) Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 10:269–280

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54

    Article  PubMed  CAS  Google Scholar 

  • Strauss E (2001) Longevity. Growing old together. Science 292:41–43

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672

    PubMed  CAS  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Yin C (2001) Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol 36:723–738

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  PubMed  CAS  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D et al (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  PubMed  CAS  Google Scholar 

  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N et al (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    Article  PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L et al (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    Article  PubMed  CAS  Google Scholar 

  • Vergara M, Smith-Wheelock M, Harper JM, Sigler R, Miller RA (2004) Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci 59:1244–1250

    Article  PubMed  Google Scholar 

  • Vijg J (2007) Aging of the genome. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wei M, Fabrizio P, Hu J, Ge H, Cheng C et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Fabrizio P, Madia F, Hu J, Ge H et al (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5:e1000467

    Article  PubMed  CAS  Google Scholar 

  • Weinberger M, Feng L, Paul A, Smith DL Jr, Hontz RD et al (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2:e748

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401

    PubMed  CAS  Google Scholar 

  • Williams KD, Busto M, Suster ML, So AK, Ben-Shahar Y et al (2006) Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc Natl Acad Sci USA 103:15911–15915

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A et al (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H et al (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  PubMed  CAS  Google Scholar 

  • Yoeli-Lerner M, Toker A (2006) Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle 5:603–605

    Article  PubMed  Google Scholar 

  • Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5:245

    PubMed  Google Scholar 

  • Zambrano MM, Kolter R (1996) GASPing for life in stationary phase. Cell 86:181–184

    Article  PubMed  CAS  Google Scholar 

  • Zambrano MM, Siegele DA, Almiron M, Tormo A, Kolter R (1993) Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760

    Article  PubMed  CAS  Google Scholar 

  • Zinser ER, Kolter R (2004) Escherichia coli evolution during stationary phase. Res Microbiol 155:328–336

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valter D. Longo or Paola Fabrizio .

Editor information

Editors and Affiliations

Appendix

Appendix

While this book was in production we published two articles relevant to the topic of this chapter. For the sake of completeness, we believe it is appropriate to discuss them briefly here. The first article has reported the results of a screen of the yeast deletion collection aimed at identifying novel life span determinants (Fabrizio et al. 2010). Besides confirming the importance of the mitochondrial function and the autophagic process in long-term survival, our screen has uncovered numerous novel genes involved in the process of determining yeast longevity. Among others ACB1, CKA2, and TRM9. The deletion of each of these three genes prolongs life span and increases heat resistance. ACB1 codes an acyl-coA binding protein involved in lipid biosynthesis and vesicle formation. Cka2 is the catalytic subunit of a serine-threonine kinase, CK2, which controls several cellular functions including cell growth and proliferation. Trm9 is a tRNA methylase that targets the uridine residues at the wobble position in tRNA(Glu) and tRNA(Arg3). Currently, the mechanisms by which these proteins regulate longevity have not been described. It will be important to elucidate them given the high degree of conservation of these novel life span determinants and the possibility that their role in aging extends to other organisms.

The second article concerns the role of the conserved pro-aging pathways in the regulation of genomic instability and cancer. In the section “Conserved Pro-aging Genes, Genomic Instability, and Cancer” we have discussed how the activity of the Sch9 and GH/IGF-I pathways promotes DNA damage in yeast and mice, respectively. We have also mentioned that GH/IGF-I-deficient mice show decreased rates of cancer incidence. Recently this observation has been extended to humans with growth hormone receptor deficiency who display a major reduction in cancer and diabetes, which is associated with reduced levels of several orthologs of the key yeast pro-aging genes (Guevara-Aguirre et al. 2011). Importantly, serum from GH/IGF-I signaling-deficient individuals protects cells in culture from H2O2-dependent DNA damage and down-regulates the expression of N-Ras, PKA, and TOR while activating SOD2 transcription. This suggests that a reduction of GH/IGF-I signaling may lead to cellular protection and reduced DNA damage in vivo via the inactivation of the pro-aging Ras, PKA, and TOR pathways, which in turn may contribute to lower incidence of cancer and other diseases. Thus, this new evidence from a human study further supports a causative link between the activity of the conserved pro-aging pathways, genomic instability, and diseases.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Longo, V.D., Fabrizio, P. (2011). Chronological Aging in Saccharomyces cerevisiae . In: Breitenbach, M., Jazwinski, S., Laun, P. (eds) Aging Research in Yeast. Subcellular Biochemistry, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2561-4_5

Download citation

Publish with us

Policies and ethics