Skip to main content

Cellular Homeostasis in Fungi: Impact on the Aging Process

  • Chapter
  • First Online:
Aging Research in Yeast

Part of the book series: Subcellular Biochemistry ((SCBI,volume 57))

Abstract

Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and apoptosis and how these pathways allow fungal organisms to maintain a balanced cellular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

apoptosis inducing factor

Amid:

AIF-homologous mitochondrion-associated inducer of death

COX:

cytochrome c oxidase

CvT:

cytoplasm-to-vacuole targeting

ER:

endoplasmic reticulum

GFP:

green fluorescent protein

MIPA:

micropexophagic membrane apparatus

PAS:

pre-autophagosomal structure

RNAi:

RNA interference

ROS:

reactive oxygen species

TOR:

target of rapamycin

Reference

  • Aksam EB, Koek A, Kiel JA, Jourdan S, Veenhuis M, van der Klei I (2007) A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 3:96–105

    PubMed  CAS  Google Scholar 

  • Almeida T, Marques M, Mojzita D, Amorim MA, Silva RD, Almeida B, Rodrigues P, Ludovico P, Hohmann S, Moradas-Ferreira P, Corte-Real M, Costa V (2008) Isc1p plays a key role in hydrogen peroxide resistance and chronological lifespan through modulation of iron levels and apoptosis. Mol Biol Cell 19:865–876

    Article  PubMed  CAS  Google Scholar 

  • Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP, Estaquier J, Sheng M, Blackstone C (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol 15:2112–2118

    Article  PubMed  CAS  Google Scholar 

  • Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  PubMed  CAS  Google Scholar 

  • Bellu AR, Komori M, van der Klei I, Kiel JA, Veenhuis M (2001) Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem 276:44570–44574

    Article  PubMed  CAS  Google Scholar 

  • Bellu AR, Salomons FA, Kiel JA, Veenhuis M, van der Klei I (2002) Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J Biol Chem 277:42875–42880

    Article  PubMed  CAS  Google Scholar 

  • Bormann C, Sahm H (1978) Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii. Arch Microbiol 117:67–72

    Article  PubMed  CAS  Google Scholar 

  • Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Fröhlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246

    Article  PubMed  Google Scholar 

  • Büttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175:521–525

    Article  PubMed  Google Scholar 

  • Camougrand NM, Grelaud-Coq A, Marza E, Priault M, Bessoule JJ, Manon S (2003) The product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Mol Microbiol 47:495–506

    Article  PubMed  CAS  Google Scholar 

  • Camougrand NM, Mouassite M, Velours GM, Guérin MG (2000) The “SUN” family: UTH1, an ageing gene, is also involved in the regulation of mitochondria biogenesis in Saccharomyces cerevisiae. Arch Biochem Biophys 375:154–160

    Article  PubMed  CAS  Google Scholar 

  • Camougrand NM, Rigoulet M (2001) Aging and oxidative stress: studies of some genes involved both in aging and in response to oxidative stress. Respir Physiol 128:393–401

    Article  PubMed  CAS  Google Scholar 

  • Campbell CL, Thorsness PE (1998) Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci 111(Pt 16):2455–2464

    PubMed  CAS  Google Scholar 

  • Cao Y, Huang S, Dai B, Zhu Z, Lu H, Dong L, Cao Y, Wang Y, Gao P, Chai Y, Jiang Y (2009) Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol 46:183–189

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Lemos C, Falcao A, Glass NL, Videira A (2008) Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death. J Biol Chem 283:19314–19321

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    Article  PubMed  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A Biol Sci Med Sci 56:B375–B383

    Article  PubMed  CAS  Google Scholar 

  • Du L, Yu Y, Chen J, Liu Y, Xia Y, Chen Q, Liu X (2007) Arsenic induces caspase- and mitochondria-mediated apoptosis in Saccharomyces cerevisiae. FEMS Yeast Res 7:860–865

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg T, Büttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Esser K (1974) Podospora anserina. In: King RC (ed) Handbook of genetics. Plenum Press, New York, NY, pp 531–551

    Google Scholar 

  • Farré JC, Manjithaya R, Mathewson RD, Subramani S (2008) PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14:365–376

    Article  PubMed  Google Scholar 

  • Farré JC, Vidal J, Subramani S (2007) A cytoplasm to vacuole targeting pathway in P. pastoris. Autophagy 3:230–234

    PubMed  Google Scholar 

  • Froschauer E, Nowikovsky K, Schweyen RJ (2005) Electroneutral K+/H+ exchange in mitochondrial membrane vesicles involves Yol027/Letm1 proteins. Biochim Biophys Acta 1711:41–48

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez IJ, Desponds C, Schaff C, Mottram JC, Fasel N (2007) Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. Int J Parasitol 37:161–172

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2007) Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol Microbiol 65:948–958

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • He C, Song H, Yorimitsu T, Monastyrska I, Yen WL, Legakis JE, Klionsky DJ (2006) Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175:925–935

    Article  PubMed  CAS  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    Article  PubMed  CAS  Google Scholar 

  • Huang WP, Scott SV, Kim J, Klionsky DJ (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275:5845–5851

    Article  PubMed  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  PubMed  CAS  Google Scholar 

  • Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    Article  PubMed  CAS  Google Scholar 

  • Kanki T, Wang K, Klionsky DJ (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6:278–280

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR Jr, Zhang J, Guarente LP (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496

    Article  PubMed  CAS  Google Scholar 

  • Kissova I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336

    PubMed  CAS  Google Scholar 

  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Lee RE, Puente LG, Kaern M, Megeney LA (2008) A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics. PLoS One 3:e2956

    Article  PubMed  Google Scholar 

  • Lee YJ, Hoe KL, Maeng PJ (2007) Yeast cells lacking the CIT1-encoded mitochondrial citrate synthase are hypersusceptible to heat- or aging-induced apoptosis. Mol Biol Cell 18:3556–3567

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, Zhou B (2007) Copper and manganese induce yeast apoptosis via different pathways. Mol Biol Cell 18:4741–4749

    Article  PubMed  CAS  Google Scholar 

  • Lorin S, Dufour E, Sainsard-Chanet A (2006) Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 1757:604–610

    Article  PubMed  CAS  Google Scholar 

  • Low CP, Shui G, Liew LP, Buttner S, Madeo F, Dawes IW, Wenk MR, Yang H (2008) Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast. J Cell Sci 121:2671–2684

    Article  PubMed  CAS  Google Scholar 

  • Luttik MA, Overkamp KM, Kotter P, de Vries S, van Dijken JP, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  PubMed  CAS  Google Scholar 

  • Meléndez A, Tallóczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  PubMed  Google Scholar 

  • Mitsui K, Nakagawa D, Nakamura M, Okamoto T, Tsurugi K (2005) Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett 579:723–727

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    Article  PubMed  CAS  Google Scholar 

  • Moehle CM, Tizard R, Lemmon SK, Smart J, Jones EW (1987) Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol 7:4390–4399

    PubMed  CAS  Google Scholar 

  • Nakai T, Yasuhara T, Fujiki Y, Ohashi A (1995) Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol 15:4441–4452

    PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  PubMed  CAS  Google Scholar 

  • Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279:30307–30315

    Article  PubMed  CAS  Google Scholar 

  • Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD (2002) Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 123:755–764

    Article  PubMed  CAS  Google Scholar 

  • Pinan-Lucarré B, Balguerie A, Clavé C (2005) Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 4:1765–1774

    Article  PubMed  Google Scholar 

  • Pinan-Lucarré B, Paoletti M, Clavé C (2007) Cell death by incompatibility in the fungus Podospora. Semin Cancer Biol 17:101–111

    Article  PubMed  Google Scholar 

  • Pinan-Lucarré B, Paoletti M, Dementhon K, Coulary-Salin B, Clavé C (2003) Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 47:321–333

    Article  PubMed  Google Scholar 

  • Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC, Askew DS (2007) The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol 63:591–604

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Oku M, van der Klei I, Kiel JA (2006) Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 1763:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Saupe SJ, Clavé C, Begueret J (2000) Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol 3:608–612

    Article  PubMed  CAS  Google Scholar 

  • Savoldi M, Malavazi I, Soriani FM, Capellaro JL, Kitamoto K, da Silva Ferreira ME, Goldman MH, Goldman GH (2008) Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. Mol Microbiol 70:44–59

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Osiewacz HD (2008) Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics 280:365–374

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Rödel E, Wüstehube J (2008) Regulation of mitochondrial dynamics – characterization of fusion and fission genes in the ascomycete Podospora anserina. Biotechnol J 3:781–790

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Yoon Y (2007) Mitochondria and peroxisomes: are the ‘big brother’ and the ‘little sister’ closer than assumed? Bioessays 29:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Shafer KS, Hanekamp T, White KH, Thorsness PE (1999) Mechanisms of mitochondrial DNA escape to the nucleus in the yeast Saccharomyces cerevisiae. Curr Genet 36:183–194

    Article  PubMed  CAS  Google Scholar 

  • Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824–834

    Article  PubMed  CAS  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    Article  PubMed  CAS  Google Scholar 

  • Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282:5617–5624

    Article  PubMed  CAS  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    Article  PubMed  CAS  Google Scholar 

  • Todde V, Veenhuis M, van der Klei I (2009) Autophagy: principles and significance in health and disease. Biochim Biophys Acta 1792:3–13

    PubMed  CAS  Google Scholar 

  • Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793:1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Tuttle DL, Dunn WA Jr (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108(Pt 1):25–35

    PubMed  CAS  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008a) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008b) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  PubMed  CAS  Google Scholar 

  • van der Klei I, Veenhuis M (2002) Peroxisomes: flexible and dynamic organelles. Curr Opin Cell Biol 14:500–505

    Article  PubMed  Google Scholar 

  • van Dyck L, Langer T (1999) ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol Life Sci 56:825–842

    Article  PubMed  Google Scholar 

  • Veenhuis M, Douma A, Harder W, Osumi M (1983) Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 134:193–203

    Article  PubMed  CAS  Google Scholar 

  • Veenhuis M, van Dijken JP, Pilon SA, Harder W (1978) Development of crystalline peroxisomes in methanol-grown cells of the yeast Hansenula polymorpha and its relation to environmental conditions. Arch Microbiol 117:153–163

    Article  PubMed  CAS  Google Scholar 

  • Wadskog I, Maldener C, Proksch A, Madeo F, Adler L (2004) Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell 15:1436–1444

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    Article  PubMed  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Stromhaug PE, Dunn WA Jr (1999) Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 10:1353–1366

    PubMed  CAS  Google Scholar 

  • Yuan W, Tuttle DL, Shi YJ, Ralph GS, Dunn WA Jr (1997) Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J Cell Sci 110(Pt 16):1935–1945

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz D. Osiewacz .

Editor information

Editors and Affiliations

Appendix

Appendix

A short description of recent important papers related to the topic of this chapter.

Although the understanding of the mechanisms regulating mitophagy has progressed in the last years, there remain still some important questions, e.g. how the molecular autophagy machinery is able to detect energetically compromised mitochondria . A possible key factor in this regard could be the protein Atg32 which has been recently identified in two independent screens for genes involved in S. cerevisiae mitophagy (Okamoto et al. 2009; Kanki et al. 2010). ATG32 was shown to be a protein residing in the outer mitochondrial membrane. Interestingly, ATG32 is neither needed for bulk autophagy nor pexophagy but is essential for the removal of mitochondria when yeast cells are grown under respiratory conditions (Kanki et al. 2009). So far, it is not clear whether ATG32 may act as a signal for compromised mitochondria, because Atg32 deletion mutants show no obvious mitochondrial defects. Therefore it is certainly possible that there are further, hitherto unknown factors that might act as signals or effectors for maintaining quality control of mitochondria by mitophagy .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scheckhuber, C.Q., Hamann, A., Brust, D., Osiewacz, H.D. (2011). Cellular Homeostasis in Fungi: Impact on the Aging Process. In: Breitenbach, M., Jazwinski, S., Laun, P. (eds) Aging Research in Yeast. Subcellular Biochemistry, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2561-4_11

Download citation

Publish with us

Policies and ethics