Skip to main content

Introduction

  • Chapter
  • First Online:
Aging Research in Yeast

Part of the book series: Subcellular Biochemistry ((SCBI,volume 57))

  • 2661 Accesses

Abstract

Aging in yeast is now a well researched area with hundreds of new research and review papers appearing every year. The chapters following in this book written by some of the leading experts in the field will give an overview of the most relevant areas of yeast aging. The purpose of this chapter is to give the newcomer an introduction to the field including some basic technical questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, Shanmuganayagam D, Weindruch R (2009) Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol 37:47–51

    Article  PubMed  Google Scholar 

  • Barker MG, Walmsley RM (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach M, Madeo F, Laun P, Heeren G, Jarolim S, Fröhlich K-U, Wissing S, Pichova A (2003) Yeast as a model for ageing and apoptosis research. Model systems in aging. Springer, Berlin/Heidelberg, pp 61–97

    Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR, Schweizer M (eds) (2004) The metabolism and molecular physiology of Saccharomyces cerevisiae, 2nd edn. CRC Press, London

    Google Scholar 

  • Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171:37–42

    PubMed  CAS  Google Scholar 

  • Eldakak A, Rancati G, Rubinstein B, Paul P, Conaway V, Li R (2010) Asymmetrically inherited multidrug resistance transporters are recessive determinants in cellular replicative ageing. Nat Cell Biol 12:799–805

    Article  PubMed  CAS  Google Scholar 

  • Erjavec N, Cvijovic M, Klipp E, Nystrom T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA 105:18764–18769

    Article  PubMed  CAS  Google Scholar 

  • Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:10877–10881

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2008) Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta 1783:1280–1285

    Article  PubMed  CAS  Google Scholar 

  • Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gully C, Gassner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757

    Article  PubMed  CAS  Google Scholar 

  • Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  PubMed  CAS  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–585

    Google Scholar 

  • Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  • Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schuller C, Carmona-Gutierrez D, Breitenbach-Koller L, Muck C, Jansen-Durr P, Criollo A, Kroemer G, Madeo F, Breitenbach M (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 1:622–636

    CAS  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    Article  PubMed  CAS  Google Scholar 

  • Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK, Young J, Mattison JA (2007) Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 145:1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1993) The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91:35–51

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1998) Genetics of longevity. Exp Gerontol 33:773–783

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM, Egilmez NK, Chen JB (1989) Replication control and cellular life span. Exp Gerontol 24:423–436

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM, Kim S, Lai CY, Benguria A (1998) Epigenetic stratification: the role of individual change in the biological aging process. Exp Gerontol 33:571–580

    Article  PubMed  CAS  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137

    PubMed  CAS  Google Scholar 

  • Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1:e69

    Article  PubMed  Google Scholar 

  • Kastman EK, Willette AA, Coe CL, Bendlin BB, Kosmatka KJ, McLaren DG, Xu G, Canu E, Field AS, Alexander AL, Voytko ML, Beasley TM, Colman RJ, Weindruch RH, Johnson SC (2010) A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 30:7940–7947

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127:1985–1993

    Article  PubMed  CAS  Google Scholar 

  • Klinger H, Rinnerthaler M, Lam YT, Laun P, Heeren G, Klocker A, Simon-Nobbe B, Dickinson JR, Dawes IW, Breitenbach M (2010) Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45:533–542

    Article  PubMed  CAS  Google Scholar 

  • Lai CY, Jaruga E, Borghouts C, Jazwinski SM (2002) A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162:73–87

    PubMed  CAS  Google Scholar 

  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Frohlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – a comparison. Exp Gerontol 41:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Guarente L (2006) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 2:e33; author reply e34

    Article  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    Article  PubMed  CAS  Google Scholar 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34

    Article  PubMed  CAS  Google Scholar 

  • McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2011 Jan) Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • McMurray MA, Gottschling DE (2004) Aging and genetic instability in yeast. Curr Opin Microbiol 7:673–679

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752

    Article  PubMed  CAS  Google Scholar 

  • Müller I, Zimmermann M, Becker D, Flömer M (1980) Calendar life span versus budding lifespan of Saccharomyces cerevisiae. Mech Ageing Dev 12:47–52

    Article  PubMed  Google Scholar 

  • Nestelbacher R, Laun P, Vondrakova D, Pichova A, Schuller C, Breitenbach M (2000) The influence of oxygen toxicity on yeast mother cell-specific aging. Exp Gerontol 35:63–70

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2007) A bacterial kind of aging. PLoS Genet 3:e224

    Article  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Stansfield I, Stark M (eds) (2007) Yeast gene analysis. Academic Press, London

    Google Scholar 

  • Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16:94–102

    Article  PubMed  CAS  Google Scholar 

  • Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6:599–606

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jiang JC, Jazwinski SM (2010) Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol 45:621–631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Breitenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Breitenbach, M., Laun, P., Jazwinski, S.M. (2011). Introduction. In: Breitenbach, M., Jazwinski, S., Laun, P. (eds) Aging Research in Yeast. Subcellular Biochemistry, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2561-4_1

Download citation

Publish with us

Policies and ethics