Skip to main content

Regulation der APP Prozessierung durch Neurotransmitterrezeptoren: Implikationen für die Entwicklung neuer Therapien der Alzheimer-Demenz

  • Conference paper
Aktuelle Perspektiven der Biologischen Psychiatrie
  • 79 Accesses

Zusammenfassung

Die Amyloidablagerungen in Gehirnen von Alzheimerpatienten stehen als pathognomonisches histopathologisches Merkmal seit langem im Zentrum der wissenschaftlichen Erforschung der Pathogenese der Erkrankung (Alzheimer 1907). Die Bildung von Amyloid im Gehirn kann Jahre bis Jahrzehnte vor dem Einsetzen der ersten klinischen Symptome beginnen und schreitet unaufhaltbar bis zu einer etwa 20%-igen Ausfüllung des corticalen Hirnvolumens in Spätstadien der Erkrankung fort. Diese hohen Mengen an Amyloid stellen ein spezifisches diagnostisches Merkmal der Alzheimer-Demenz (AD) dar, sie werden neben der AD nur in Spätstadien des Down Syndroms beobachtet, das neuropathologisch durch alzheimerspezifische Veränderungen charakterisiert ist. Amyloidplaques bestehen aus unlöslichen Aggregaten des Amyloid β-Proteins (Aβ), einem 39–43 Aminosäurenreste langen Peptid, das durch proteolytischen Abbau des größeren Amyloidvorläuferproteins APP generiert werden kann (Kang et al. 1987). Aβ Moleküle haben eine starke Tendenz zur Autoaggregation und können bei hohen Konzentrationen in vitro auch in Abwesenheit aggregationsfördernder Faktoren zu unlöslichen Fibrillen aggregieren (Jarrett und Lansbury 1993). Im Gehirn können jedoch noch zusätzliche amyloidotrophe Faktoren (z. B. freie Sauerstoffradikale) vorliegen, die den Aggregationsprozeß von Aß in Amyloid auch bei niedrigen Konzentrationen fördern könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psych Psych Ger Med 64: 146–148

    Google Scholar 

  • Barger SW, Fiscus RR, Ruth P, Hofmann F, Mattson MP (1995) The role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of β-amyloid precursor. J Neurochem 64: 2087–2096

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β-protein toxicity. Cell 77: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Cai X-D, Golde TE, Younkin SG (1993) Release of excess amyloid β-protein from a mutant amyloid β-protein precursor. Science 259: 514–516

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin M-C, Crawford F, Houlden H (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353: 844–846

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360: 672–674

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Vigo-Pelfrey C, Teplow DB, Miller C, Schenk D, Johnston J, Winblad B, Venizelos N, Lannfelt L, Selkoe DJ (1994) Excessive production of amyloid β-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer’s disease mutation. Proc Natl Acad Sci USA 91: 11993–11997

    Article  PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin M-C, Mullan M, Broen J, Crawford F, Fidani L, Giuffra L, Hayes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor gene with familial Alzheimer’s disease. Nature 349: 704–706

    Article  PubMed  CAS  Google Scholar 

  • Hung AY, Haass C, Nitsch RM, Qiao Qiu W, Citron M, Wurtman RJ, Growdon JH, Selkoe DJ (1993) Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J Biol Chem 268: 22959–22962

    PubMed  CAS  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding „one-dimensional crystallization“ of amyloid: a pathogenic mechanism in Alzheimer’s disease and Scrapie? Cell 73: 1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736

    Article  PubMed  CAS  Google Scholar 

  • Lee RKK, Wurtman RJ, Slack BE, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA 92: 8083–8087

    Article  PubMed  CAS  Google Scholar 

  • Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL (1992) The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9: 129–137

    Article  PubMed  CAS  Google Scholar 

  • Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad b, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-ter-minus of beta-amyloid. Nature Genet 1: 345–347

    Article  PubMed  CAS  Google Scholar 

  • Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with heredirary Alzheimer’s disease. Science 254: 97–99

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Growdon JH (1994) Role of neurotransmission in the regulation of amyloid β-protein precursor processing. Biochem Pharmacol 47: 1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Farber Sa, Growdon JH, Wurtman RJ (1993) Release of amyloid β-protein precursor derivatives from hippocampal slices by electrical depolarization. Proc Natl Acad Sci USA 90: 5191–5193

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Rebeck GW, Deng M, Richardson UI, Tennis M, Schenk DB, Vigo-Pelfrey C, Lieberburg I, Wurtman RJ, Hyman BT, Growdon JH (1995) Cerebrospinal fluid levels of amyloid β-protein in Alzheimer’s disease: inverse correlation with severety of dementia and effect of apolipoprotein genotype. Ann Neurol 37: 512–518

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Deng M, Growdon JH, Wurtman RJ (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate APPs secretion. J Biol Chem (in press)

    Google Scholar 

  • Slack BE, Nitsch RM, Livneh E, Kunz GM Jr, Breu J, Eldar H, Wurtman RJ (1993) Regulation by phorbol esters of amyloid precursor protein release from Swiss 3T3 fibroblasts overexpressing protein kinase Ca. J Biol Chem 268: 21097–21101

    PubMed  CAS  Google Scholar 

  • Suzuki N, Cheung TT, Cai X-D, Odaka A, Otvos L Jr, Echman C, Golde TE, Younkin SG (1994) An increased percantage of long amyloid β-protein secreted by familial amyloid β-protein precursor (βAPP717) mutants. Science 264: 1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Weidemann A, König G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126

    Article  PubMed  CAS  Google Scholar 

  • Yankner B, Duffy L, Da K (1990) Neurotrophic and neurotoxic effects of amyloid β-protein: reversal by tachikinin neuropeptides. Science 250: 279–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

Nitsch, R.M. (1996). Regulation der APP Prozessierung durch Neurotransmitterrezeptoren: Implikationen für die Entwicklung neuer Therapien der Alzheimer-Demenz. In: Möller, HJ., Müller-Spahn, F., Kurtz, G. (eds) Aktuelle Perspektiven der Biologischen Psychiatrie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6889-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6889-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7425-8

  • Online ISBN: 978-3-7091-6889-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics