Skip to main content

Forschungsmethoden der Neuropsychologie

  • Chapter
Klinische Neuropsychologie
  • 16k Accesses

Zusammenfassung

Die Forschungsmethoden der Neuropsychologie sind sehr mannigfaltig und reichen von ‚Papier- und Bleistift-Methoden’ der Geisteswissenschaften über medizinische nicht-apparative und apparative Untersuchungsmethoden, über psychologische Testverfahren bis zur Hochtechnologie. Die Vielfalt rührt daher, dass es sich bei der Neuropsychologie um ein Grenzgebiet handelt, besser gesagt um ein überdeckungsfeld, ein integratives Forschungsgebiet und interdisziplinären Bereich mehrerer Fachgebiete. Entsprechend ist auch der akademische Zugang zu diesem Fach multidisziplinär. Man kann von der Medizin und / oder von der Psychologie kommen, neuerdings auch von der Humanbiologie. Auch die Linguisten kommen hinzu; allerdings ist die Sprache nur ein Teil der Neuropsychologie.

Die Einleitung und die Abschnitte 4.1., 4.2., 4.3., 4.4.1., 4.4.3., 5.1. und 5.3. stammen von L. Deecke, die Abschnitte 2., 3., 4.4.2. und 5.2. von H. Bauer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Asenbaum S, Brücke T, Pirker W, Podreka I, Angelberger P, Wenger S, Wöber C, Müller C, Deecke L (1997) Imaging of dopamine transporters with Iodine-123-β-CIT and SPECT in Parkinson’s disease. J Nucl Med 38:1–6

    PubMed  Google Scholar 

  • Bauer H (1998) Slow Potential Topography. Behavior Research Methods, Instruments & Computers, 30:20–33

    Article  Google Scholar 

  • Bauer H, Pripfl J, Lamm C, Prainsack Ch, Taylor N (2003) Functional Neuroanatomy of Learned Helplessness. Neuroimage, 20: 927–939

    Article  PubMed  Google Scholar 

  • Baumgartner C, Doppelbauer A, Sutherling WW, Zeitlhofer J, Lindinger G, Lind C, Deecke L (1991) Human somatosensory cortical finger representation as studied by combined neuromagnetic and neuroelectric measurements. Neurosci Lett 134: 103–108

    Article  PubMed  Google Scholar 

  • Beisteiner R, Windischberger C, Lanzenberger R, Edward V, Cunnington R, Erdler M, Gartus A, Streibl B, Moser E, Deecke L (2001) Finger somatotopy in human motor cortex. NeuroImage 13: 1016–1026

    Article  PubMed  Google Scholar 

  • Dal-Bianco A (2005) The lateralization value of Wada test memory scores in patients with temporal lobe epilepsy. Thesis. Medical University Vienna

    Google Scholar 

  • Deecke L, Grözinger B, Kornhuber HH (1976) Voluntary finger movement in man: Cerebral potentials and theory. Biol Cybern 23: 99–119, criteria met for «Citation Classic»

    Article  PubMed  Google Scholar 

  • Deecke L, Kornhuber HH (2003) Human freedom, reasoned will, and the brain: The Bereitschaftspotential story. In: Jahanshahi M, Hallett M (Eds) The Bereitschaftspotential, movement-related cortical potentials. Kluwer Academic / Plenum Publishers, New York, pp 283–320

    Google Scholar 

  • Downer JC (1961) Changes in visual Gnostic functions and emotional behavior following unilateral temporal pole damage in the „split-brain“ monkey. Nature 191: 50–51

    Article  PubMed  Google Scholar 

  • Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole scalp magnetoencephalography system. NeuroImage 11: 697–707

    Article  PubMed  Google Scholar 

  • Flexer A, Gruber G, Dorffner G (2005) A reliable probabilistic sleep stager based on a single EEG signal. Artifi Intelli Med, 33: 199–207

    Article  Google Scholar 

  • Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120: 1587–1602

    Article  PubMed  Google Scholar 

  • Goldenberg G, Podreka I, Uhl F, Steiner M, Willmes K, Deecke L (1989) Cerebral correlates of imagining colours, faces and a map — I. SPECT of regional cerebral blood flow. Neuropsy chologia 27: 1315–1328

    Article  Google Scholar 

  • Gray CJ, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86: 1698–1702

    Article  PubMed  Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Syndrome, Lokalisationen, Funktionen. Basel Schwabe

    Google Scholar 

  • Kleist K (1934) Gehirnpathologie. Johann Ambrosius Barth Verlag Leipzig.

    Google Scholar 

  • Klimesch W, Doppelmayr M, Yonelinas A, Kroll NEA, Lazzara M, Röhm D, Gruber W (2001) Theta synchronization during episodic retrieval: neural correlates of conscious awareness. Cognitive Brain Research, 12,1, 33–38

    Article  PubMed  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch 284: 1–17 ‚Citation Classic’

    Article  Google Scholar 

  • Kornhuber HH, Deecke L (2007) Wille und Gehirn. Edition Sirius, Bielefeld / Basel, 2. überarb. Aufl. 2009

    Google Scholar 

  • Lamm C, Windischberger C, Leodolter U, Moser E, Bauer H (2001) Co-registration of Co-registration of EEG and MRI data using matching of spline interpolated and MRI-segmented reconstructions of the scalp surface. Brain Topography, 14: 93–100

    Article  PubMed  Google Scholar 

  • Libet B, Wright EW, Gleason CA (1983a) Preparation-or intention-to-act, in relation to preevent potentials recorded at the vertex. Electroencephalogr Clin Neurophysiol. 56: 367–72

    Article  PubMed  Google Scholar 

  • Libet B, Gleason CA, Wright EW, Pearl DK (1983b) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain. 106: 623–42

    Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin. Neurophysiology, 115: 2195–222

    Article  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J Psychophysiology, 18,1, 49–65

    Article  Google Scholar 

  • Petsche H (1996) Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int. J. Psychophysiology, 24:1–2, 145–159

    Article  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG / MEG synchronization and desynchronization: basic principles Clinical Neurophysiology, 110,11, 1842–1857

    Google Scholar 

  • Püregger E, Walla P, Deecke L, Dal-Bianco P (2003) Magnetoencephalographic-features related to mild cognitive impairment. NeuroImage 20: 2235–2244

    Article  PubMed  Google Scholar 

  • Rockstroh B, Elbert T, Birbaumer N, Wolf P, Duchting-Roth A, Reker M, Daum I, Lutzenberger W, Dichgans J., Epilepsy Res. 1993

    Google Scholar 

  • Starr A, Kristeva R, Cheyne D, Lindinger G, Deecke L (1991) Localization of brain activity during auditory verbal short-term memory derived from magnetic recordings. Brain Res 558: 181–190

    Article  PubMed  Google Scholar 

  • Uhl F, Goldenberg G, Lang W, Lindinger G, Steiner M, Deecke L (1990) Cerebral corre lates of imagining colours, faces and a map — II. Negative cortical DC-potentials. Neuropsychologia 28: 81–93

    Article  PubMed  Google Scholar 

  • Walla P, Püregger E, Lehrner J, Mayer D, Deecke L, Dal Bianco P (2004) Depth of word processing in Alzheimer patients and normal controls: a magnetoencephalographic (MEG) study. J Neural Transmiss

    Google Scholar 

  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AI (1964) Contingent negative variation: An electric sign of sensori-motor association and expectancy in the human brain. Nature 203: 380–384

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Bauer, H., Deecke, L. (2011). Forschungsmethoden der Neuropsychologie. In: Lehrner, J., Pusswald, G., Fertl, E., Strubreither, W., Kryspin-Exner, I. (eds) Klinische Neuropsychologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0064-6_16

Download citation

Publish with us

Policies and ethics