Skip to main content

Forschungsaspekte und In-vitro-Modelle

  • Chapter
  • First Online:
Die Plazenta

Zusammenfassung

Da es kein adäquates Tiermodell zur Untersuchung der humanen Plazentaentwicklung gibt, beruhen Erkenntnisse zu zellbiologischen Abläufen der Plazentaentwicklung, wie etwa Aspekte der Trophoblastdifferenzierung, aber auch immunologische und endokrine Funktionen der humanen Plazenta, zu einem wesentlichen Anteil auf In-vitro-Untersuchungen an unterschiedlichen Zell- und Gewebskulturmodellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Baranska P et al (2005) Expression of integrins and adhesive properties of human endothelial cell line EA.hy 926. Cancer Genomics & Proteomics 270(2):265–269

    Google Scholar 

  • Ben Amara A et al (2013) Placental macrophages are impaired in chorioamnionitis, an infectious pathology of the placenta. J Immunol 191:5501–5514

    Article  CAS  Google Scholar 

  • Bilban M et al (2010) Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta 31(11):989–996

    Article  CAS  Google Scholar 

  • Buerki-Thurnherr T, Von Mandach U, Wick P (2012) Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med Wkly 142:w13559

    PubMed  Google Scholar 

  • Bulmer JN, Johnson PM (1984) Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol 57(2):393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burton GJ, Charnock-Jones DS, Jauniaux E (2009) Regulation of vascular growth and function in the human placenta. Reprod 138(6):895–902

    Article  CAS  Google Scholar 

  • Cervar M et al (1999) Paracrine regulation of distinct trophoblast functions in vitro by placental macrophages. Cell and Tissue Res 295(2):297–305. http://doi.org/10.1007/s004410051236

    Article  CAS  Google Scholar 

  • Challier J, Schneider H, Dancis J (1976) In vitro perfusion of human placenta. v. oxygen consumption. Am J Obstet Gynecol 126(2):261–265

    Article  CAS  Google Scholar 

  • Chi J-T et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Nat Acad of Sci U.S.A 100(19):10623–10628

    Article  CAS  Google Scholar 

  • Claise C et al (1999) Oxidized-LDL induce apoptosis in HUVEC but not in the endothelial cell line EA.hy 926. Atherosclerosis 147(1):95–104

    Article  CAS  Google Scholar 

  • Dancis J et al (1973) Transfer across perfused human placenta II. Free fatty acids. Pediatr Res 7(4):192–197

    Article  CAS  Google Scholar 

  • Davis J, Crampton SP, Hughes CCW (2007) Isolation of human umbilical vein endothelial cells(HUVEC). J Vis Exp 3:183. https://doi.org/10.3791/183

    Article  Google Scholar 

  • Dekker Nitert M et al (2005) IGF-I/insulin hybrid receptors in human endothelial cells. Mol Cell Endocrinol 229(1–2):31–37

    Article  CAS  Google Scholar 

  • Desoye G et al (1994) Insulin receptors in syncytiotrophoblast and fetal endothelium of human placenta. Immunohistochemical evidence for developmental changes in distribution pattern. Histochem 101(4):277–285

    Article  CAS  Google Scholar 

  • Douglas GC, King BF (1989) Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J Immunol Methods 119(2):259–268

    Article  CAS  Google Scholar 

  • Frank H et al (2001) Cell culture models of human trophoblast: primary culture of trophoblast – a workshop report in cooperation with A. Placenta 22(15):107–109

    Article  Google Scholar 

  • Frank HG et al (2000) Cytogenetic and DNA-fingerprint characterization of choriocarcinoma cell lines and a trophoblast/choriocarcinoma cell hybrid. Cancer Genet and Cytogenet 116(1):16–22

    Article  CAS  Google Scholar 

  • Genbacev O, Schubach SA, Miller RK (1992) Villous culture of first trimester human placenta-model to study extravillous trophoblast (EVT) differentiation. Placenta 13(5):439–461

    Article  CAS  Google Scholar 

  • Guilbert LJ et al (2002) Preparation and functional characterization of villous cytotrophoblasts free of syncytial fragments. Placenta 23(2–3):175–183

    Article  CAS  Google Scholar 

  • Hannan NJ et al (2010) Models for study of human embryo implantation: choice of cell lines? Biol reprod 82(2):235–245

    Article  CAS  Google Scholar 

  • Hauguel S et al (1983) Metabolism of the human placenta perfused in vitro: glucose transfer and utilization, O2 consumption, lactate and ammonia production. Pediatr res 17(9):729–732

    Article  CAS  Google Scholar 

  • Hertz R (1959) Choriocarcinoma of women maintained in serial passage in hamster and rat. Proc Soc Exp Biol Med 102:77–81

    Article  CAS  Google Scholar 

  • Hiden U et al (2007) The first trimester human trophoblast cell line ACH-3P: a novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations--TNF-alpha stimulates MMP15 expression. BMC Dev Biol 7:137

    Article  Google Scholar 

  • Hughes SE (1996) Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis. Exp Cell Res 225(1):171–185

    Article  CAS  Google Scholar 

  • Huppertz B et al (1999) Apoptosis cascade progresses during turnover of human trophoblast: analysis of villous cytotrophoblast and syncytial fragments in vitro. Lab Invest 79(12):1687–1702

    CAS  PubMed  Google Scholar 

  • Hutson JR et al (2011) The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther 90(1):67–76

    Article  CAS  Google Scholar 

  • Irvin MW et al (2014) Techniques and assays for the study of angiogenesis. Exp Bio Med 239(11):1476–1488

    Article  Google Scholar 

  • Jaffe EA et al (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Inv 52(11):2745–2756

    Article  CAS  Google Scholar 

  • Johnson EL, Chakraborty R (2012) Placental Hofbauer cells limit HIV-1 replication and potentially offset mother to child transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology 9(1):101

    Article  CAS  Google Scholar 

  • Kawata M, Parnes JR, Herzenberg LA (1984) Transcriptional control of HLA-A, B, C antigen in human placental cytotrophoblast isolated using trophoblast- and HLA-specific monoclonal antibodies and the fluorescence-activated cell sorter. J Exp Med 160(3):633–651

    Article  CAS  Google Scholar 

  • Kim J et al (2008) Involvement of Hofbauer cells and maternal T cells in villitis of unknown etiology. Histopathology 52(4):457–464

    Article  Google Scholar 

  • King A, Thomas L, Bischof P (2000) Cell culture models of trophoblast II: trophoblast cell lines – a workshop report. Placenta 21 Suppl A: 113–119

    Article  Google Scholar 

  • Kliman HJ et al (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinol 118(4):1567–1582

    Article  CAS  Google Scholar 

  • Lang I et al (2001) Differential mitogenic responses of human macrovascular and microvascular endothelial cells to cytokines underline their phenotypic heterogeneity. Cell Prolif 34(3):143–155

    Article  CAS  Google Scholar 

  • Lang I et al (2003) Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur J Cell Biol 82(4):163–173

    Article  Google Scholar 

  • Lang I et al (2008) Human fetal placental endothelial cells have a mature arterial and a juvenile venous phenotype with adipogenic and osteogenic differentiation potential. Differ 76(10):1031–1043

    Article  CAS  Google Scholar 

  • Lewis RM et al (2013) Review: modelling placental amino acid transfer – from transporters to placental function. Placenta 34:S46–S51

    Article  CAS  Google Scholar 

  • Loegl J et al (2016) Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reprod 152(5):447–455

    Article  CAS  Google Scholar 

  • Loke Y, King A, Burrows T (1995) Decidua in human implantation. Hum Reprod 10 Suppl 2: 14–21

    Google Scholar 

  • Manyonda IT, Whitley GSJ, Cartwright JE (2001) Trophoblast cell lines: a response to the workshop report by King et al. (Placenta [2000], 21 Suppl A, Trophoblast Research, 14: S113-S119). Placenta 22(2–3): 262–263

    Article  CAS  Google Scholar 

  • Mathiesen L et al (2010) Quality assessment of a placental perfusion protocol. Reprod Toxicol 30(1):138–146

    Article  CAS  Google Scholar 

  • Matsubara S et al (2003) Hofbauer cell activation and its increased glucose-6-phosphate dehydrogenase activity in second trimester-spontaneous abortion: an ultrastructural dual staining enzyme-cytochemical study. Am J Reprod Immunol 49(4):202–209

    Article  CAS  Google Scholar 

  • Miller RK et al (2005) Human placental explants in culture: approaches and assessments. Placenta 26(6):439–448

    Article  CAS  Google Scholar 

  • Moskalewski S, Czarnik Z, Ptak W (1975) Demonstration of cells with IgG Receptor in Human Placenta. Biol. Neonate 26(3–4):268–273

    Article  CAS  Google Scholar 

  • Narahara H, Nishioka Y, Johnston JM (1993) Secretion of platelet-activating factor acetylhydrolase by human decidual macrophages. J clin endocrinol metab 77(5):1258–1262

    CAS  PubMed  Google Scholar 

  • Narahara H et al (2003) Platelet-activating factor inhibits the secretion of platelet-activating factor acetylhydrolase by human decidual macrophages. J clin endocrinol metab 88(12):6029–6033

    Article  CAS  Google Scholar 

  • Nikolov SD, Schiebler TH (1981) Endothelial cells in the blood vessels of mature human placental villi. Acta Anat 110(4):338–344

    Article  CAS  Google Scholar 

  • Novakovic B et al (2011) Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function. Mol Hum Reprod 17(6):344–353

    Article  CAS  Google Scholar 

  • Orendi K et al (2011) Placental and trophoblastic in vitro models to study preventive and therapeutic agents for preeclampsia. Placenta 32:49–54

    Article  Google Scholar 

  • Panigel M (1962) Placental perfusion experiments. Am J Obstet Gynecol 84(11):1664–1683

    Article  Google Scholar 

  • Pattillo RA, Gey GO (1968) The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res 28(7):1231–1236

    CAS  PubMed  Google Scholar 

  • Perazzolo S et al (2016) The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res 58(2): jlr.P072355

    Google Scholar 

  • Schneider H, Panigel M, Dancis J (1972) Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol 114(6):822–828

    Article  CAS  Google Scholar 

  • Schneider H, Mohlen K, Dancis J (1979) Transfer of amino acids across the in vitro perfused human placenta. Pediatr Res 4(1):236–240

    Article  Google Scholar 

  • Seval Y, Korgun ET, Demir R (2007) Hofbauer cells in early human placenta: possible implications in vasculogenesis and angiogenesis. Placenta 28(8–9):841–845

    Article  CAS  Google Scholar 

  • Shiverick K et al (2001) Cell culture models of human trophoblast II: trophoblast cell lines--a workshop report. Placenta 22 Suppl A: 104–106

    Article  Google Scholar 

  • Simoni MK et al (2017) Zika virus infection of Hofbauer cells. Am J Reprod Immunol 77(2). https://doi.org/10.1111/aji.12613

  • Siwetz M et al (2016) TNF-α alters the inflammatory secretion profile of human first trimester placenta. Lab Invest 96(4):428–438

    Article  CAS  Google Scholar 

  • Sutton LN, Mason DY, Redman CW (1989) Isolation and characterization of human fetal macrophages from placenta. Clin Exp Immunol 78(3):437–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson-Arvelund J et al (2015) The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 194:1534–1544

    Article  CAS  Google Scholar 

  • Tang Z et al (2011) Isolation of Hofbauer cells from human term placentas with high yield and purity. Am J Reprod Immunol 66(4):336–348

    Article  Google Scholar 

  • Tarrade A et al (2001) Characterization of human villous and extravillous trophoblasts Isolated from first trimester placenta. Lab Invest 81(9):1199–1211

    Article  CAS  Google Scholar 

  • Uren S, Boyle W (1985) Isolation of macrophages from human placenta. J Immunol Methods 78(1):25–34

    Article  CAS  Google Scholar 

  • Vince GS et al (1990) Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J Immunol Methods 132(2):181–189

    Article  CAS  Google Scholar 

  • Wetzka B, Clark DE, Chamock-Jones DS et al (1997) Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E2 and thromboxane production. Hum Reprod 12(4):847–852

    Article  CAS  Google Scholar 

  • Wilson CB, Haas JE, Weaver WM (1983) Isolation, purification and characteristics of mononuclear phagocytes from human placentas. J Immunol methods 56(3):305–317

    Article  CAS  Google Scholar 

  • Wood GW (1980) Mononuclear phagocytes in the human placenta. Placenta 1(2):113–123

    Article  CAS  Google Scholar 

  • Zaccheo D et al (1989) Isolation and characterization of Hofbauer cells from human placental villi. Archives Gynecol Obstet 246(4):189–200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gauster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gauster, M., Gruber, M., Hirschmugl, B., Schliefsteiner, C., Wadsack, C. (2018). Forschungsaspekte und In-vitro-Modelle. In: Huppertz, B., Schleußner, E. (eds) Die Plazenta. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55622-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55622-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55621-4

  • Online ISBN: 978-3-662-55622-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics