Skip to main content

The Glycogen Storage Diseases and Related Disorders

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Disorders of glycogen metabolism primarily involve liver and/or muscle although there are rare neurological phenotypes associated with some enzyme deficiencies. Most are referred to by a roman numeral or by the specific enzyme that is deficient. The use of eponyms is now largely historical. The hepatic glycogenosis generally cause hepatomegaly (apart from GSD Oa) and fasting hypoglycaemia whereas the muscle disorders are associated with skeletal and/or cardiomyopathy. The clinical phenotypes are extremely heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinstein DA, Correia CE, Saunders AC, Wolfsdorf JI (2006) Hepatic glycogen synthase deficiency: an infrequently recognized cause of ketotic hypoglycemia. Mol Genet Metab 87:284–288

    Google Scholar 

  2. Froissart R, Piraud M, Boudjemline A et al. (2011) Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 6:27

    Google Scholar 

  3. Bandsma RHJ, Prinsen BH, van Der Velden M de S et al. (2008) Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to hyperlipidemia in glycogen storage disease type 1a. Pediatr Res 63:702–707

    Google Scholar 

  4. Jun HS, Weinstein DA, Lee YM, Mansfield BC, Chou JY (2014) Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 123:2843–2853

    Google Scholar 

  5. Rake JP, Visser G, Labrune P et al. (2002) Guidelines for management of glycogen storage disease type I - European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 161: S112–119

    Google Scholar 

  6. Kishnani PS, Austin SL, Abdenur JE et al. (2014) Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 1–29

    Google Scholar 

  7. Dixon M, MacDonald A, Staffort J, White F, Portnoi P (2014) Disorders of Carbohydrate Metabolism. In: Shaw V (ed) Clin Paediatr, 4th edn. Oxford Boston Wiley-Blackwell

    Google Scholar 

  8. Bhattacharya K, Mundy H, Lilburn MF et al. (2015) A pilot longitudinal study of the use of waxy maize heat modified starch in the treatment of adults with glycogen storage disease type I: a randomized double-blind cross-over study. Orphanet J Rare Dis 10:18

    Google Scholar 

  9. Ross KM, Brown LM, Corrado MM et al. (2015) Safety and Efficacy of Chronic Extended Release Cornstarch Therapy for Glycogen Storage Disease Type I. JIMD Rep [2015 Nov 3. Epub ahead of print]

    Google Scholar 

  10. Shah KK, O’Dell SD (2013) Effect of dietary interventions in the maintenance of normoglycaemia in glycogen storage disease type 1a: a systematic review and meta-analysis. J Hum Nutr Diet 26:329–339

    Google Scholar 

  11. Derks TGJ, Martens DH, Sentner CP et al. (2013) Dietary treatment of glycogen storage disease type Ia: uncooked cornstarch and/or continuous nocturnal gastric drip-feeding? Mol Genet Metab 109:1–2

    Google Scholar 

  12. Hochuli M, Christ E, Meienberg F et al (2015) Alternative nighttime nutrition regimens in glycogen storage disease type I: a controlled crossover study. J Inherit Metab Dis 38:1093–1098

    Google Scholar 

  13. White FJ, Jones SA (2015) The use of continuous glucose monitoring in the practical management of glycogen storage disorders. J Inherit Metab Dis 34:631–642

    Google Scholar 

  14. Beegle RD, Brown LM, Weinstein DA (2015) Regression of hepatocellular adenomas with strict dietary therapy in patients with glycogen storage disease type I. JIMD Rep 18:23–32

    Google Scholar 

  15. Chiu L-Y, Kishnani PS, Chuang T-P et al. (2014) Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J Gastroenterol 49:1274–1284

    Google Scholar 

  16. Calderaro J, Labrune P, Morcrette G et al. (2013) Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J Hepatol 58:350–357

    Google Scholar 

  17. Kishnani PS, Chuang T-P, Bali D et al. (2009) Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease. Hum Mol Genet 18:4781–4790

    Google Scholar 

  18. Davis MK, Rufo PA, Polyak SF, Weinstein DA (2008) Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis 31:S505–509

    Google Scholar 

  19. Lawrence NT, Chengsupanimit T, Brown LM, Weinstein DA (2015) High Incidence of Serologic Markers of Inflammatory Bowel Disease in Asymptomatic Patients with Glycogen Storage Disease Type Ia. JIMD Rep 24:123–128

    Google Scholar 

  20. Melis D, Cozzolino M, Minopoli G et al. (2015) Progression of renal damage in glycogen storage disease type I is associated to hyperlipidemia: a multicenter prospective Italian study. J Pediatr 166:1079–1082

    Google Scholar 

  21. Visser G, Rake JP, Labrune P et al. (2002) Consensus guidelines for management of glycogen storage disease type 1b – European Study on Glycogen Storage Disease Type 1. Eur J Pediatr 161:S120–123

    Google Scholar 

  22. Melis D, Minopoli G, Balivo F et al. (2015) Vitamin E Improves Clinical Outcome of Patients Affected by Glycogen Storage Disease Type Ib. JIMD Rep [cited 2015 Nov 7. Epub ahead of print]

    Google Scholar 

  23. Banugaria SG, Austin SL, Boney A, Weber TJ, Kishnani PS (2010) Hypovitaminosis D in glycogen storage disease type I. Mol Genet Metab 99:434–437

    Google Scholar 

  24. Clar J, Gri B, Calderaro J et al. (2014) Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int 86:747–756

    Google Scholar 

  25. Boers SJB, Visser G, Smit PGPA, Fuchs SA (2014). Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis 9:47

    Google Scholar 

  26. Martens DHJ, Rake JP, Schwarz M et al. (2008) Pregnancies in glycogen storage disease type Ia. Am J Obstet Gynecol 198:646.e1–7

    Google Scholar 

  27. Dagli AI, Lee PJ, Correia CE et al. (2010) Pregnancy in glycogen storage disease type Ib: gestational care and report of first successful deliveries. J Inherit Metab Dis 33:S151–157

    Google Scholar 

  28. Sechi A, Deroma L, Lapolla A et al. (2013) Fertility and pregnancy in women affected by glycogen storage disease type I, results of a multicenter Italian study. J Inherit Metab Dis 36:83–89

    Google Scholar 

  29. Bernier AV, Sentner CP, Correia CE et al. (2008) Hyperlipidemia in glycogen storage disease type III: effect of age and metabolic control. J Inherit Metab Dis 31:729–732

    Google Scholar 

  30. Shen JJ, Chen YT (2002). Molecular characterization of glycogen storage disease type III. Curr Mol Med 2:167–175

    Google Scholar 

  31. Kishnani PS, Austin SL, Arn P et al. (2010) Glycogen storage disease type III diagnosis and management guidelines. Genet Med 12:446–463

    Google Scholar 

  32. Derks TGJ, Smit GPA (2015). Dietary management in glycogen storage disease type III: what is the evidence? J Inherit Metab Dis 38:545–550

    Google Scholar 

  33. Ramachandran R, Wedatilake Y, Coats C et al. (2012) Pregnancy and its management in women with GSD type III – a single centre experience. J Inherit Metab Dis 35:245–251

    Google Scholar 

  34. Aksu T, Colak A, Tufekcioglu O (2012). Cardiac Involvement in Glycogen Storage Disease Type IV: Two Cases and the Two Ends of a Spectrum. Case Rep Med 764286

    Google Scholar 

  35. Li S-C, Chen C-M, Goldstein JL et al. (2010) Glycogen storage disease type IV: novel mutations and molecular characterization of a heterogeneous disorder. J Inherit Metab Dis 33:S83–90

    Google Scholar 

  36. Akman HO, Karadimas C, Gyftodimou Y et al. (2006) Prenatal diagnosis of glycogen storage disease type IV. Prenat Diagn 26:951–951

    Google Scholar 

  37. Davis MK, Weinstein DA (2008) Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr Transplant 12:137–145

    Google Scholar 

  38. Willot S, Marchand V, Rasquin A, Alvarez F, Martin SR (2010) Systemic progression of type IV glycogen storage disease after liver transplantation. J Pediatr Gastroenterol Nutr 51:661–664

    Google Scholar 

  39. Roscher A, Patel J, Hewson S et al. (2014) The natural history of glycogen storage disease types VI and IX: Long-term outcome from the largest metabolic center in Canada. Mol Genet Metab 113:171–176

    Google Scholar 

  40. Manzia TM, Angelico R, Toti L et al. (2011) Glycogen storage disease type Ia and VI associated with hepatocellular carcinoma: two case reports. Transplant Proc 43:1181–1183

    Google Scholar 

  41. Hoogeveen IJ, van der Ende RM, van Spronsen FJ et al. (2015) Normoglycemic Ketonemia as Biochemical Presentation in Ketotic Glycogen Storage Disease. JIMD Rep [cited 2015 Nov 29. Epub ahead of print]

    Google Scholar 

  42. Beauchamp NJ, Taybert J, Champion MP et al. (2007) High frequency of missense mutations in glycogen storage disease type VI. J Inherit Metab Dis 30:722–734

    Google Scholar 

  43. Goldstein J, Austin S, Kishnani P et al. (2011) Phosphorylase Kinase Deficiency. GeneReviews [Internet]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK55061/

  44. Bali DS, Goldstein JL, Fredrickson K et al. (2014) Variability of disease spectrum in children with liver phosphorylase kinase deficiency caused by mutations in the PHKG2 gene. Mol Genet Metab 111:309–313

    Google Scholar 

  45. Burwinkel B, Scott JW, Bührer C et al. (2005) Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet 76:1034–1049

    Google Scholar 

  46. Tonin P, Lewis P, Servidei S, DiMauro S (1990). Metabolic causes of myoglobinuria. Ann Neurol 27:181–185

    Google Scholar 

  47. Nadaj-Pakleza AA, Vincitorio CM, Laforêt P et al. (2009) Permanent muscle weakness in McArdle disease. Muscle Nerve 40:350–357

    Google Scholar 

  48. Martín MA, Rubio JC, Wevers RA et al. (2004) Molecular analysis of myophosphorylase deficiency in Dutch patients with McArdle’s disease. Ann Hum Genet 68:17–22

    Google Scholar 

  49. Bartram C, Edwards RH, Clague J, Beynon RJ (1993) McArdle’s disease: a nonsense mutation in exon 1 of the muscle glycogen phosphorylase gene explains some but not all cases. Hum Mol Genet 2:1291–1293

    Google Scholar 

  50. el-Schahawi M, Tsujino S, Shanske S, DiMauro S (1996) Diagnosis of McArdle’s disease by molecular genetic analysis of blood. Neurology 47:579–580

    Google Scholar 

  51. Martinuzzi A, Sartori E, Fanin M et al. (2003) Phenotype modulators in myophosphorylase deficiency. Ann Neurol 53:497–502

    Google Scholar 

  52. Hogrel J-Y, van den Bogaart F, Ledoux I et al. (2015) Diagnostic power of the non-ischaemic forearm exercise test in detecting glycogenosis type V. Eur J Neurol 22:933–940

    Google Scholar 

  53. Hogrel JY, Laforêt P, Ben Yaou R et al. (2001) A non-ischemic forearm exercise test for the screening of patients with exercise intolerance. Neurology 56:1733–1738

    Google Scholar 

  54. Vissing J, Haller RG (2003) A diagnostic cycle test for McArdle’s disease. Ann Neurol 54:539–542

    Google Scholar 

  55. Duboc D, Jehenson P, Tran Dinh S et al. (1987) Phosphorus NMR spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology 37:663–671

    Google Scholar 

  56. Haller RG (2000) Treatment of McArdle disease. Arch Neurol 57:923–924

    Google Scholar 

  57. Andersen ST, Haller RG, Vissing J (2008) Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol 65:786–789

    Google Scholar 

  58. Vissing J, Haller RG (2003) The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 349:2503–2509

    Google Scholar 

  59. Andersen ST, Vissing J (2008) Carbohydrate- and protein-rich diets in McArdle disease: effects on exercise capacity. J Neurol Neurosurg Psychiatry 79:1359–1363

    Google Scholar 

  60. van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet 372:1342–1353

    Google Scholar 

  61. van den Hout HMP, Hop W, van Diggelen OP et al. (2003) The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 112:332–340

    Google Scholar 

  62. Hagemans MLC, Winkel LPF, Van Doorn PA et al. (2005) Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain 128:671–677

    Google Scholar 

  63. Makos MM, McComb RD, Hart MN, Bennett DR (1987) Alpha-glucosidase deficiency and basilar artery aneurysm: report of a sibship. Ann Neurol 22:629–633

    Google Scholar 

  64. Laforêt P, Petiot P, Nicolino M et al. (2008) Dilative arteriopathy and basilar artery dolichoectasia complicating late-onset Pompe disease. Neurology 70:2063–2066

    Google Scholar 

  65. Fukuda T, Ewan L, Bauer M et al. (2006) Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol 59:700–708

    Google Scholar 

  66. Chamoles NA, Niizawa G, Blanco M, Gaggioli D, Casentini C (2004) Glycogen storage disease type II: enzymatic screening in dried blood spots on filter paper. Clin Chim Acta 347:97–102

    Google Scholar 

  67. Laforêt P, Nicolino M, Eymard PB et al. (2000) Juvenile and adult-onset acid maltase deficiency in France: genotype-phenotype correlation. Neurology 55:1122–1128

    Google Scholar 

  68. Kishnani PS, Corzo D, Nicolino M et al. (2007) Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 68:99–109

    Google Scholar 

  69. Case LE, Bjartmar C, Morgan C et al. (2015) Safety and efficacy of alternative alglucosidase alfa regimens in Pompe disease. Neuromuscul Disord 25:321–332

    Google Scholar 

  70. Broomfield A, Fletcher J, Davison J et al. (2016) Response of 33 UK patients with infantile-onset Pompe disease to enzyme replacement therapy. J Inherit Metab Dis 39:261–271

    Google Scholar 

  71. Hahn A, Praetorius S, Karabul N et al. (2015) Outcome of patients with classical infantile pompe disease receiving enzyme replacement therapy in Germany. JIMD Rep 20:65–75

    Google Scholar 

  72. Chien Y-H, Lee N-C, Chen C-A et al. (2015) Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. J Pediatr 166:985–991.e1–2

    Google Scholar 

  73. Banugaria SG, Prater SN, Ng Y-K et al. (2011) The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med 13:729–736

    Google Scholar 

  74. van der Ploeg AT, Clemens PR, Corzo D et al. (2010) A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med 362:1396–1406

    Google Scholar 

  75. Anderson LJ, Henley W, Wyatt KM et al. (2014) Effectiveness of enzyme replacement therapy in adults with late-onset Pompe disease: results from the NCS-LSD cohort study. J Inherit Metab Dis 37:945–952

    Google Scholar 

  76. Schorderet DF, Cottet S, Lobrinus JA et al. (2007) Retinopathy in Danon disease. Arch Ophthalmol (Chicago, Ill 1960) 125:231–236

    Google Scholar 

  77. Danon MJ, Oh SJ, DiMauro S et al. (1981) Lysosomal glycogen storage disease with normal acid maltase. Neurology 31:51–57

    Google Scholar 

  78. Nishino I, Fu J, Tanji K et al. (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910

    Google Scholar 

  79. Dworzak F, Casazza F, Mora M et al. (1994) Lysosomal glycogen storage with normal acid maltase: a familial study with successful heart transplant. Neuromuscul Disord 4:243–247

    Google Scholar 

  80. Moslemi A-R, Lindberg C, Nilsson J et al. (2010) Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med 362:1203–1210

    Google Scholar 

  81. Kollberg G, Tulinius M, Gilljam T et al. (2007) Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med 357:1507–1514

    Google Scholar 

  82. Nilsson J, Schoser B, Laforet P et al. (2013) Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann Neurol 74:914–919

    Google Scholar 

  83. Malfatti E, Nilsson J, Hedberg-Oldfors C et al. (2014) A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol 76:891–898

    Google Scholar 

  84. Boisson B, Laplantine E, Prando C et al. (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 13:1178–1186

    Google Scholar 

  85. Laforêt P, Richard P, Said MA et al. (2006) A new mutation in PRKAG2 gene causing hypertrophic cardiomyopathy with conduction system disease and muscular glycogenosis. Neuromuscul Disord 16:178–182

    Google Scholar 

  86. Gollob MH, Green MS, Tang AS et al. (2001) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344:1823–1831

    Google Scholar 

  87. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346:659–669

    Google Scholar 

  88. Benarroch EE (2010) Glycogen metabolism: metabolic coupling between astrocytes and neurons. Neurology 74:919–923

    Google Scholar 

  89. Vilchez D, Ros S, Cifuentes D et al. (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413

    Google Scholar 

  90. Turnbull J, Girard J-M, Lohi H et al. (2012) Early-onset Lafora body disease. Brain 135:2684–2698

    Google Scholar 

  91. Paradas C, Akman HO, Ionete C et al. (2014) Branching enzyme deficiency: expanding the clinical spectrum. JAMA Neurol 71:41–47

    Google Scholar 

  92. Robitaille Y, Carpenter S, Karpati G, DiMauro SD (1980) A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora’s dise. Brain 103:315–336

    Google Scholar 

  93. Cafferty MS, Lovelace RE, Hays AP et al. (1991) Polyglucosan body disease. Muscle Nerve 14:102–107

    Google Scholar 

  94. Savage G, Ray F, Halmagyi M, Blazely A, Harper C (2007) Stable neuropsychological deficits in adult polyglucosan body disease. J Clin Neurosci 14:473–477

    Google Scholar 

  95. Mochel F, Schiffmann R, Steenweg ME et al. (2012) Adult polyglucosan body disease: Natural History and Key Magnetic Resonance Imaging Findings. Ann Neurol 72:433–441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Walter , Philippe A. Labrune or Pascal Laforet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, J., Labrune, P.A., Laforet, P. (2016). The Glycogen Storage Diseases and Related Disorders. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics