Skip to main content

Diagnostic Procedures

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Unlike most other genetic disorders, IEMs are usually diagnosed from biochemical analyses prior to molecular testing. Basal metabolic investigations remain the gold standard for many clinical presentations (hypoglycaemia, liver disease, epilepsy, neurodevelopmental delay, movement disorders, neuro-sensorial deficit, peripheral neuropathy, etc.). If an IEM is suspected, then blood, urine and cerebrospinal fluid should be collected for the appropriate investigations (7 Chapter 1, 7 Fig. 1.1). If no material is available or if the results are ambiguous, a provocative test that challenges a metabolic pathway may provide clues to a diagnosis and indicate which specific enzymatic or genetic analysis should be undertaken. Functional tests are dynamic investigations based on the measurement of intermediary metabolites in body fluids. They are most useful in disorders that give rise to toxicity or energy deficiency. The best functional test is elicited by nature itself during episodes that cause metabolic stress, including acute infection, inadvertent fasting, or consumption of a nutrient that induces a metabolic intolerance

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershkovitz E, Rachmel A, Ben-Zaken H, Philip M (2001) Continuous glucose monitoring in children with glycogen storage disease type I. J Inherit Metab Dis 24:863–869

    Google Scholar 

  2. Poggi-Travert F, Martin D, Billette de Villemeur T et al. (1996) Metabolic intermediates in lactic acidosis: compounds, samples and interpretation. J Inherit Metab Dis 19:478–488

    Google Scholar 

  3. Touati G, Rigal O, Lombes A et al. (1997) In vivo functional investigations of lactic acid in patients with respiratory chain disorders. Arch Dis Child 76:16–21

    Google Scholar 

  4. Iles RA, Hind AJ, Chalmers RA (1985) Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem 31:1795–1801

    Google Scholar 

  5. Burns SP, Woolf DA, Leonard JV, Iles RA (1992) Investigation of urea cycle enzyme disorders by 1H-NMR spectroscopy. Clin Chim Acta 209:47–60

    Google Scholar 

  6. Wevers RA, Engelke UF, Moolenaar SH et al. (1999) 1H-NMR spectroscopy of body fluids: inborn errors of purine and pyrimidine metabolism. Clin Chem 45:539–548

    Google Scholar 

  7. Sewell AC, Murphy HC, Iles RA (2002) Proton nuclear magnetic resonance spectroscopic detection of sialic acid storage disease. Clin Chem 48:357–359

    Google Scholar 

  8. Engelke UF, Liebrand-van Sambeek ML, de Jong JG et al. (2004) N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism. Clin Chem 50:58–66

    Google Scholar 

  9. Oostendorp M, Engelke UF, Willemsen MA, Wevers RA (2006) Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clin Chem 52:1395–1405

    Google Scholar 

  10. Moolenaar SH, Poggi-Bach J, Engelke UF et al. (1999) Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clin Chem 45:459–464

    Google Scholar 

  11. Moolenaar SH, van der Knaap MS, Engelke UF et al. (2001a) In vivo and in vitro NMR spectroscopy reveal a putative novel inborn error involving polyol metabolism. NMR Biomed 14:167–176

    Google Scholar 

  12. Moolenaar SH, Gohlich-Ratmann G, Engelke UF et al. (2001b) beta-Ureidopropionase deficiency: a novel inborn error of metabolism discovered using NMR spectroscopy on urine. Magn Reson Med 46:1014–1017

    Google Scholar 

  13. Wolf NI, Willemsen MA, Engelke UF et al. (2004) Severe hypomyelination associated with increased levels of N-acetylaspartylglutamate in CSF. Neurology 62:1503–1508

    Google Scholar 

  14. Mochel F, Sedel F, Vanderver A et al. (2009) Cerebellar ataxia with elevated cerebrospinal free sialic acid (CAFSA). Brain 132:801–809

    Google Scholar 

  15. Engelke UF, Moolenaar SH, Hoenderop SMGC et al. (2007) Handbook of 1H-NMR spectroscopy in inborn errors of metabolism: body fluid NMR spectrum and in vivo MR spectroscopy. SPS, Heilbronn

    Google Scholar 

  16. Schulze A, Bachert P, Schlemmer H et al. (2003) Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann Neurol 53:248–251

    Google Scholar 

  17. Huck JH, Verhoeven NM, Struys EA et al. (2004) Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 74:745–751

    Google Scholar 

  18. Mochel F, Yang B, Barritault J et al. (2009) Free sialic acid storage disease without sialuria. Ann Neurol 65:753–757

    Google Scholar 

  19. Mochel F, Engelke UF, Barritault J et al. (2010) Elevated CSF N-acetylaspartylglutamate in patients with free sialic acid storage diseases. Neurology 74:302–305

    Google Scholar 

  20. Engel J, Blanchet L, Engelke UF, Wevers RA, Buydens LM (2014) Towards the disease biomarker in an individual patient using statistical health monitoring. PLoS One 9:e92452

    Google Scholar 

  21. Vaz FM, Pras-Raves M, Bootsma AH, van Kampen AH (2015) Principles and practice of lipidomics. J Inherit Metab Dis 38:41–52

    Google Scholar 

  22. Colsch B, Seyer A, Boudah S, Junot C (2015) Lipidomic analysis of cerebrospinal fluid by mass spectrometry-based methods. J Inherit Metab Dis 38:53–64

    Google Scholar 

  23. Bonnefont JP, Specola NB, Vassault A et al. (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150:80–85

    Google Scholar 

  24. Fernandes J, Huijing F, van de Kamer JH (1969) A screening method for liver glycogen diseases. Arch Dis Child 44:311–317

    Google Scholar 

  25. Chi CS, Mak SC, Shian WJ, Chen CH (1992) Oral glucose lactate stimulation in mitochondrial diseases. Pediatr Neurol 8:445–449

    Google Scholar 

  26. Haan EA, Danks DM, Grimes A, Hoogenraad NJ (1982) Carrier detection in ornithine transcarbamylase deficiency. J Inherit Metab Dis 5:37–40

    Google Scholar 

  27. Burlina AB, Ferrari V, Dionisi-Vici C et al. (1992) Allopurinol challenge in children. J Inherit Metab Dis 15:707–712

    Google Scholar 

  28. Spada M, Guardamagna O, Rabier D et al. (1994) Recurrent episodes of bizarre behaviour in a boy with ornithine transcarbamylase deficiency: diagnostic failure of protein loading and allopurinol challenge tests. J Pediatr 125:249–251

    Google Scholar 

  29. Hogrel JY, Laforêt P, Ben Yaou R et al. (2001) A non-ischemic forearm exercise test for the screening of patients with exercise intolerance. Neurology 56:1733–1738

    Google Scholar 

  30. Kazami- Esfarjani P, Skomorowska E, Jensen TD, Haller RG, Vissing JA (2002) Non ischemic forearm exercise test for McArdle disease. Ann Neurol 52:153–159

    Google Scholar 

  31. Vissing J, Haller RG (2003) A diagnostic cycle test for McArdle’s disease. Ann Neurol. 54:539–542

    Google Scholar 

  32. Hogrel JY, van den Bogaart F, Ledoux I et al. (2015) Diagnostic power of the non-ischaemic forearm exercise test in detecting glycogenosis type V. Eur J Neurol 22:933–940

    Google Scholar 

  33. Hanisch F, Eger K, Bork S et al. (2006) Lactate production upon short-term non-ischemic forearm exercise in mitochondrial disorders and other myopathies. J Neurol 253:735–740

    Google Scholar 

  34. Preisler N, Haller RG, Vissing J (2015) Exercise in muscle glycogen storage diseases. J Inherit Metab Dis 38:551–563

    Google Scholar 

  35. Coutelier M, Goizet C, Durr A et al. (2015) Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 138:2191–2205

    Google Scholar 

  36. Fischer-Zirnsak B, Escande-Beillard N, Ganesh J et al. (2015) Recurrent de novo mutations affecting residue Arg138 of Pyrolline-5-Carboxylate synthase cause a progeroid form of autosomal-dominant cutis laxa. Am J Hum Genet 97:483–492

    Google Scholar 

  37. Agbaga MP (2016) Different mutations in ELOVL4 affect very long chain fatty acid biosynthesis to cause variable neurological disorders in humans. Adv Exp Med Biol 854:129–135

    Google Scholar 

  38. Kronick JB, Scriver CR, Goodyer PR, Kaplan PB (1983) A perimortem protocol for suspected genetic disease. Pediatrics 71:960–963

    Google Scholar 

  39. Helweg-Larsen K (1993) Postmortem protocol. Acta Paediatr 389: S77–79

    Google Scholar 

  40. Poggi F, Rabier D, Vassault A et al. (1994) Protocole d’investigations métaboliques dans les maladies héréditaires du métabolisme. Arch Pediatr 1:667–673

    Google Scholar 

  41. Rashed MS, Ozand PT, Bennett J et al. (1995) Inborn errors of metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin Chem 41:1109–1114

    Google Scholar 

  42. Collardeau-Frachon S, Cordier MP, Rossi M, Guibaud L, Vianey-Saban C (2016) Antenatal manifestations of inborn errors of metabolism: autopsy findings suggestive of a metabolic disorder. J Inherit Metab Dis 39:597–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guy Touati , Fanny Mochel or Daniel Rabier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Touati, G., Mochel, F., Rabier, D. (2016). Diagnostic Procedures. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics