Skip to main content

Disorders of Glucose Transport

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

To date, five congenital defects of monosaccharide transporters (Glucose Transporters) are known (Fig. 10.1). Their clinical picture depends on tissue-specific expression and substrate specificity of the affected transporter (Box). SGLT1 deficiency causes intestinal glucose-galactose malabsorption, a condition that presents with severe osmotic diarrhoea and dehydration soon after birth. SGLT2 mutations result in isolated renal glucosuria, a harmless renal transport defect characterised by normal blood glucose concentrations and the absence of any other signs of renal tubular dysfunction. In GLUT1 deficiency, also termed glucose transporter-1 deficiency, clinical symptoms such as microcephaly, epileptic encephalopathies, paroxysmal movement disorders or different types of tremor, are caused by impaired glucose transport at the blood-brain barrier, but haemolytic anaemia has also been described in this condition. Fanconi-Bickel syndrome is the result of a deficiency of GLUT2, an important glucose and galactose carrier of hepatic, renal and pancreatic β-cells. Patients typically present with a combination of increased hepatic glycogen storage and generalised renal tubular dysfunction which includes severe glucosuria. Finally, GLUT10 deficiency is an entity characterised by hyperelastic connective tissue and generalised tortuosity and elongation of all major arteries including the aorta which is not related to impaired transport of glucose but of the structurally related dehydroascorbic acid at the mitochondrial membrane of smooth muscle cells and insulin-stimulated adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EM Wright, DDF Loo, BA Hirayama (2011) Biology of Human Sodium Glucose Transporters. Physiol Rev 91:733–794

    Google Scholar 

  2. Meeuwisse GW (1970) Glucose-galactose malabsorption: studies on renal glucosuria. Helv Paediat Acta 25:13–24

    Google Scholar 

  3. Tasic V, Slaveska N, Blau N, Santer R (2004) Nephrolithiasis in a child with glucose-galactose malabsorption. Pediatr Nephrol 19:244–246

    Google Scholar 

  4. Turk E, Zabel B, Mundlos S et al. (1991) Glucose/galactose malabsorption caused by a defect in the Na(+)/glucose cotransporter. Nature 350:354–356

    Google Scholar 

  5. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A (2008) Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 28:35–54

    Google Scholar 

  6. Röder PV, Geillinger KE, Zietek TS et al. (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9:e89977

    Google Scholar 

  7. Santer R, Hillebrand G, Steinmann B, Schaub J (2003) Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans. Gastroenterology 124:34–39

    Google Scholar 

  8. Xin B, Wang H (2011) Multiple sequence variations in SLC5A1 gene are associated with glucose-galactose malabsorption in a large cohort of Old Order Amish. Clin Genet 79:86–91

    Google Scholar 

  9. Martin MG, Turk E, Lostao MP et al. (1996) Defects in Na(+)/glucose cotrans-porter (SGLT1) trafficking and function cause glucose-galactose mal-absorption. Nat Genet 12:216–220

    Google Scholar 

  10. Elsas LJ, Lambe DW (1973) Familial glucose-galactose malabsorption: remission of glucose intolerance. J Pediatr 83:226–232

    Google Scholar 

  11. Brodehl J, Oemar BS, Hoyer PF (1987) Renal glucosuria. Pediatr Nephrol 1:502–508

    Google Scholar 

  12. Calado J, Sznajer Y, Metzger D et al. (2008) Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol Dial Transplant 23:3874–3879

    Google Scholar 

  13. Scholl S, Santer R, Ehrich JHH (2004) Long-term outcome of renal glucosuria type 0 – the original patient and his natural history. Nephrol Dial Transpl 19:2394–2396

    Google Scholar 

  14. Magen D, Sprecher E, Zelikovic I, Skorecki K (2005) A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int 67:34–41

    Google Scholar 

  15. Santer R, Kinner M, Lassen C et al. (2003) Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 14:2873–2882

    Google Scholar 

  16. Lee H, Han KH, Park HW et al. (2012) Familial renal glucosuria: a clinicogenetic study of 23 additional cases. Pediatr Nephrol 27:1091–1095

    Google Scholar 

  17. Suls A, Mullen SA, Weber YG et al. (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419

    Google Scholar 

  18. Mullen SA, Marini C, Suls A et al. (2011) Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol 68:1152–1155

    Google Scholar 

  19. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC (2010) The spectrum of movement disorders in Glut-1 deficiency. Mov Disord 25:275–281

    Google Scholar 

  20. Leen WG, Klepper J, Verbeek MM et al. (2010) Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 133:655–670

    Google Scholar 

  21. Klepper J, De Vivo DC, Webb DW, Klinge L, Voit T (2003) Reversible infantile hypoglycorrhachia: possible transient disturbance in glucose transport? Pediatr Neurol 29:321–325

    Google Scholar 

  22. Rotstein M, Doran J, Yang H et al. (2009) Glut1 deficiency and alternating hemiplegia of childhood. Neurology 73:2042–2044

    Google Scholar 

  23. Suls A, Dedeken P, Goffin K et al. (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131: 1831–1844

    Google Scholar 

  24. Weber YG, Storch A, Wuttke TV et al. (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168

    Google Scholar 

  25. Ullner PM, Di Nardo A, Goldman JE et al. (2009) Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis. Neurobiol Dis 36:60–69

    Google Scholar 

  26. Klepper J (2009) Autosomal recessive inheritance of GLUT1 deficiency Syndrome. Neuropediatrics 40:207–210

    Google Scholar 

  27. Klepper J, Willemsen M, Verrips A et al. (2001) Autosomal dominant transmission of GLUT1 deficiency. Hum Mol Genet 10:63–68

    Google Scholar 

  28. Seidner G, Alvarez MG, Yeh JI et al. (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 18:188–191

    Google Scholar 

  29. Wang D, Kranz-Eble P, De Vivo DC (2000) Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum Mutat 16:224–231

    Google Scholar 

  30. Deng D, Xu C, Sun P et al. (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    Google Scholar 

  31. Ito Y, Takahashi S, Kagitani-Shimono K et al. (2015) Nationwide survey of glucose transporter-1 deficiency syndrome (GLUT-1DS) in Japan. Brain Dev 37:780–789

    Google Scholar 

  32. Leen WG, Willemsen MA, Wevers RA, Verbeek MM (2012) Cerebrospinal fluid glucose and lactate: age-specific reference values and implications for clinical practice. PLoS One 7:e42745

    Google Scholar 

  33. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC (2002) Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol 52:458–464

    Google Scholar 

  34. Klepper J, Garcia-Alvarez M, O’Driscoll KR et al. (1999) Erythrocyte 3-O-methyl-D-glucose uptake assay for diagnosis of glucose-transporter-protein syndrome. J Clin Lab Anal 13:116–121

    Google Scholar 

  35. Ito S, Oguni H, Ito Y, Ishigaki, K, Ohinata J, Osawa M (2008) Modified Atkins diet therapy for a case with glucose transporter type 1 deficiency syndrome. Brain Dev 30:226–228

    Google Scholar 

  36. Kossoff EH, Zupec-Kania BA, Amark PE et al. (2009) Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia 50:304–317

    Google Scholar 

  37. Klepper J, Scheffer H, Leiendecker, B et al. (2005) Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics 36:302–308

    Google Scholar 

  38. Wong HY, Chu TS, Lai JC et al. (2005) Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem 96:775–785

    Google Scholar 

  39. Santer R, Steinmann B, Schaub J (2002) Fanconi-Bickel syndrome – a congenital defect of facilitative glucose transport. Curr Mol Med 2:213–227

    Google Scholar 

  40. Santer R, Schneppenheim R, Suter D, Schaub J, Steinmann B (1998) Fanconi-Bickel syndrome - the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr 157:783–797

    Google Scholar 

  41. Sansbury FH, Flanagan SE, Houghton JA et al. (2012) SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia 55:2381–2385

    Google Scholar 

  42. Müller D, Santer R, Krawinkel M, Christiansen B, Schaub J (1997) Fanconi-Bickel syndrome presenting in neonatal screening for galactosaemia. J Inherit Metab Dis 20:607–608

    Google Scholar 

  43. Furlan F, Santer R, Vismara E et al. (2006) Bilateral nuclear cataracts as the first neonatal sign of Fanconi-Bickel syndrome. J Inherit Metab Dis 29:685

    Google Scholar 

  44. Grünert SC, Schwab KO, Pohl M, Sass JO, Santer R (2012) Fanconi-Bickel syndrome: GLUT2 mutations associated with a mild phenotype. Mol Genet Metab 105:433–437

    Google Scholar 

  45. Santer R, Schneppenheim R, Dombrowski A et al. (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326

    Google Scholar 

  46. Taha D, Al-Harbi N, Al-Sabban E (2008) Hyperglycemia and hypoinsulin-emia in patients with Fanconi-Bickel syndrome. J Pediatr Endocrinol Metab 21:581–586

    Google Scholar 

  47. McCulloch LJ, van de Bunt M, Braun M et al. (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648–653

    Google Scholar 

  48. van de Bunt M, Gloyn AL (2012) A tale of two glucose transporters: how GLUT2 re-emerged as a contender for glucose transport into the human beta cell. Diabetologia. 55:2312–2315

    Google Scholar 

  49. Santer R, Groth S, Kinner M et al. (2002) The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 110:21–29

    Google Scholar 

  50. Paesold-Burda P, Baumgartner MR, Santer R, Bosshard NU, Steinmann B (2007) Elevated serum biotinidase activity in hepatic glycogen storage disorders – a convenient biomarker. J Inherit Metab Dis 30:896–902

    Google Scholar 

  51. Lee PJ, van’t Hoff WG, Leonard JV (1995) Catch-up growth in Fanconi-Bickel syndrome with uncooked cornstarch. J Inherit Metab Dis 18:153–156

    Google Scholar 

  52. Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT (2010) Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Molec Genet 19:3721–3733

    Google Scholar 

  53. Willaert A, Khatri S, Callewaert BL et al. (2012) GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGF-beta signaling. Hum Molec Genet 21:1248–1259

    Google Scholar 

  54. Coucke PJ, Willaert A, Wessels MW et al. (2006) Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 38:452–457

    Google Scholar 

  55. Callewaert BL, Willaert A, Kerstjens-Frederikse WS et al. (2008) Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 29:150–158

    Google Scholar 

  56. Coady MJ, El Tarazi A, Santer R et al (2016) MAP17 is a necessary activator of renal Na+/Glucose Cotransporter SGLT2. J Am Soc Nephrol DOI:10.1681/ASN.2015111282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to René Santer or Joerg Klepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santer, R., Klepper, J. (2016). Disorders of Glucose Transport. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics