Skip to main content

Clinical Approach to Inborn Errors of Metabolism in Pediatrics

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Inborn errors of metabolism (IEM) are individually rare, but collectively numerous. The application of tandem mass spectrometry (tandem MS) to newborn screening and prenatal diagnosis has enabled presymptomatic diagnosis for some IEM. However, for most, neonatal screening tests are either too slow, expensive or unreliable and, as a consequence, a simple method of clinical screening is mandatory before initiating sophisticated biochemical investigations. This Chapter gives an overview of clinical clues to the diagnosis of IEM in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collardeau-Frachon S, Cordier MP, Rossi M et al (2016) Antenatal manifestations of inborn errors of metabolism: autopsy findings suggestive of a metabolic disorder. J inherit Metab Dis 39:597–610

    Google Scholar 

  2. Zala D, Hinckelmann MV, Yu H et al. (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491

    Google Scholar 

  3. Lamari F, Mochel F, Saudubray JM (2015) An overview of inborn errors of complex lipid biosynthesis and remodelling. J Inherit Metab Dis 38:3–18

    Google Scholar 

  4. Sprecher ED, Ischida-Yamamoto A, Mizrahi-Koren M et al. (2005 ) A mutation in SNAP29,coding for a SNARE protein involved in intracellular trafficking,causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis and palmoplantar keratoderma. Am J Hum Genet 77:242–251

    Google Scholar 

  5. Hirst J, Edgar JR, Esteves T et al. (2015) Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Gen 24:4984–4996

    Google Scholar 

  6. Clayton EL, Mizielinska S, Edgar JR et al. (2015) Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol 130:511–523

    Google Scholar 

  7. Stockler S, Silvia Corvera S, Lambright D et al. (2014) Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking. Orphanet J Rare Dis 9:141–152

    Google Scholar 

  8. Saitsu H, Nishimura T, Muramatsu K et al. (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45:445–449

    Google Scholar 

  9. Saudubray JM, Baumgartner MR, Wanders R (2015) Complex lipids. J Inherit Metab Dis 38:1

    Google Scholar 

  10. Morava E, Rahman S, Peters V et al. (2015) Quo vadis: the re-definition of «inborn metabolic diseases«. J Inherit Metab Dis 38:1003–1006

    Google Scholar 

  11. Saudubray JM (2002) Inborn Errors of Metabolism. Semin Neonatol 7:1

    Google Scholar 

  12. Wolf N, Garcia-Cazorla A, Hoffmann G (2009) Epilepsy and inborn errors of metabolism. J Inher Metab Dis 32:609–617

    Google Scholar 

  13. Thompson MD, Roscioli T, Marcelis C et al. (2012) Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). Am J Med Genet 158A:553-558

    Google Scholar 

  14. Casey JP, Slattery S, Cotter M et al. (2015) Clinical and genetic characterisation of infantile liver failure syndrome type I, due too recessive mutations in LARS. J Inherit Metab Dis 38:1085–1093

    Google Scholar 

  15. Staufner C, Haack TB, Köpke MG et al. (2016) Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. J Inherit Metab Dis 39:13–16

    Google Scholar 

  16. Visapaa I, Fellman V, Vesa J et al. (2002) GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71:863–876

    Google Scholar 

  17. Gomes Martins E, Santos Silva E, Vilarinho S, Saudubray JM, Vilarinho L (2010) Neonatal cholestasis: an uncommon presentation of hyperargininemia. J Inherit Metab Dis 3:S503-506

    Google Scholar 

  18. Schlipf NA, Schüle R, Klimpe S et al. (2011) Amplicon-based high-throughput pooled sequencing identifies mutations in CYP7B1 and SPG7 in sporadic spastic paraplegia. Clin Genet 80:148–160

    Google Scholar 

  19. Bonnet D, Martin D, De Lonlay P et al. (1999) Arrhythmias and conduction defects as a presenting symptom of fatty-acid oxidation disorders in children. Circulation 100:2248–2253

    Google Scholar 

  20. Walterfang M, Bonnot O, Mocellin R, Velakoulis D (2013) The neuropsychiatry of inborn errors of metabolism. J Inherit Metab Dis 36:687–702

    Google Scholar 

  21. Feldshtein M, Elkrinavi S, Yerushalmi B et al. (2010) Hyperchlorhydrosis caused by homozygous mutationsin CA12 encoding carbonic anhydrase XII. Am J Hum Genet 87:13–20

    Google Scholar 

  22. van Rijt WJ, Koolhaas GD, Bekhof J et al. (2016) Inborn errors of metabolism that cause sudden infant death: A systematic review with implications for population neonatal screening programmes. Neonatology 109:297–302

    Google Scholar 

  23. Lalani SR , Liu P, Rosenfeld JA et al. (2016) Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations Am J Hum Genet 98:347–357

    Google Scholar 

  24. Kremer LS, Distelmaier F, Alhaddad B et al. (2016) Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy Am J Hum Genet 98: 58–362

    Google Scholar 

  25. Dlamini N, Voermans NC, Lillis S et a.l (2013) Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord.23:540–548

    Google Scholar 

  26. Ferguson PJ, Sandu M (2012) Current understanding of the pathogenesis and management of chronic recurrent multifocal osteomyelitis. Curr Rheumatol Rep 14:130–141

    Google Scholar 

  27. Ortigoza-Escobar JD, Molero-Luis M, Arias A et al. (2016) Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain 139:31–38

    Google Scholar 

  28. Saudubray JM, De lonlay P, Touati G et al. (2000) Genetic hypoglycaemia in infancy and childhood : pathophysiology and diagnosis. J Inherit Metab Dis 23:197–214

    Google Scholar 

  29. Bonnefont JP, Specola NB, Vaussault A et al. (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150:80–85

    Google Scholar 

  30. Mochel F, Slama A, Touati G et al. (2005) Respiratory chain defects may present only with hypoglycemia. J Clin Endocrinol Metab 90:3780–3785

    Google Scholar 

  31. Mercimek-Mahmutoglu S, Horvath GA et al. (2012) Profound neonatal hypoglycemia and lactic acidosis caused by pyridoxine-dependent epilepsy. Pediatrics 129:368–372

    Google Scholar 

  32. Saudubray JM, Rabier D (2007) Biomarkers identified in inborn errors for lysine, arginine, and ornithine. Review. J Nutr 137:1669S–1672S

    Google Scholar 

  33. Matsuo H, Chiba T, Nagamori S et al. (2008) Mutations in glucose transporter 9 gene cause renal hypouricemia. Am J Hum Genet 83:744–751

    Google Scholar 

  34. Anzai N, Kanai H, Endou H (2007) New insights into renal transport of urates. Curr Opin Rheumatol 19:151–157

    Google Scholar 

  35. Belostotsky R, Ben-Shalom E, Rinat C et al. (2010) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200

    Google Scholar 

  36. Molero-Luis M, Serrano M, O’Callaghan MM et al. (2015) Clinical, etiological and therapeutic aspects of cerebral folate deficiency. Expert Rev Neurother 7:793–802

    Google Scholar 

  37. Zhou J, Tawk M, Tiziano FD et al. (2012) Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet 91:5–14

    Google Scholar 

  38. Mencacci NE, Erro R, Wiethoff S et al. (2015). ADCY5 mutations are another cause of benign hereditary chorea. Neurology 85:80–88

    Google Scholar 

  39. Bandettini di Poggio M, Nesti C et al. (2013) Dopamine-agonist responsive Parkinsonism in a patient with the SANDO syndrome caused by POLG mutation. BMC Med Genet 14:105

    Google Scholar 

  40. Mencacci NE, Kamsteeg EJ, Nakashima K et al. (2016) De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. Am J Hum Genet 98:735–743

    Google Scholar 

  41. Brozkova DS, Deconinck T, Griffin LB et al. (2015) Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies. Brain 138:2161–2162

    Google Scholar 

  42. Guemez-Gamboa A, Nguyen LN, Yang H et al. (2015) Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet 47:809–813

    Google Scholar 

  43. Ferreira CR, Silber MH, Chang T, Murnick JG, Kirmse B (2016) Cerebral lipid accumulation detected by MRS in a child with carnitine palmitoyltransferase 2 deficiency: A case report and review of the literature on genetic etiologies of lipid peaks on MRS. J Inherit Metab Dis PMID: 26537576 DOI: 10.1007/8904 2015 506

    Google Scholar 

  44. Colombelli C, Aoun M, Tiranti V (2015) Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron. J Inherit Metab Dis 38:123–136

    Google Scholar 

  45. Meyer E, Kurian MA, Hayflick SJ (2015) Neurodegeneration with brainiron accumulation: genetic diversity and pathophysiological mechanisms. Annu Rev Gen Hum Genet 16:257–279

    Google Scholar 

  46. Rattner A, Sun H, Nathans J (1999) Molecular genetics of human retinal disease. Ann Rev Genet 33:89–131

    Google Scholar 

  47. Retnet Retinal information network. https://sph.uth.edu/retnet/

  48. Garcia-Cazorla A, Mochel F, Lamari F, Saudubray JM (2015) The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 38:19–40

    Google Scholar 

  49. Koenekoop RK, Wang H, Majewski J et al. (2013) Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet 44:1035

    Google Scholar 

  50. Barwick KES, Wright J, Al-Turki S et al. (2012) Defective presynaptic choline transport underlies hereditary motor neuropathy. Am J Hum Genet 91:1103–1107

    Google Scholar 

  51. Oji V, Tadini G, Akiyama M et al. (2010) Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol 63:607–641

    Google Scholar 

  52. Vanakker O, Callewaert B, Malfait F, Coucke P (2015) The genetics of soft connective tissue disorders. Annu Rev Gen Hum Genet 16:229–255

    Google Scholar 

  53. Mohamed M, Kouwenberg D, Gardeitchik T et al. (2011) Metabolic cutis laxa syndromes. J Inherit Metab Dis 34:907–916

    Google Scholar 

  54. Douillard C, Mention K, Dobbelaere D et al. (2012) Hypoglycaemia related to inherited metabolic diseases in adults. Orphanet J Rare Dis 7:26

    Google Scholar 

  55. Schwartz CE, May MM, Carpenter NJ et al. (2005) Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCD8) gene. Am J Hum Genet 77:41–53

    Google Scholar 

  56. Vantyghem MC, Dobbelaere D, Mention K et al. (2012) Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J Rare Dis 7:11

    Google Scholar 

  57. Dale RC, Gornall H, Singh-Grewall D et al. (2010) Familial Aicardi-Goutiéres syndrome due to SAMHD1 mutations is associated with chronic arthropathy and contractures. Am J Med Genet 152 A:938–942

    Google Scholar 

  58. Thiele H, du Moulin M, Barczyk K et al. (2010) Cerebral arterial stenosis and stroke:novel features of Aicardi Goutiéres syndrome caused by the Arg164X mutation in SAMDH1 are associated with altered cytokine expression. Hum Mutat 11:E1836–1850

    Google Scholar 

  59. Kitamura A, Maekawa Y, Uehara H et al. (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121:4150–4160

    Google Scholar 

  60. Boisson B, Laplantine E, Prando C et al. (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 12:1178–1186

    Google Scholar 

  61. Ombrello MJ, Remmers EF, Sun G et al. (2012) Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 366:330–338

    Google Scholar 

  62. Belaya K, Rodríguez Cruz PM, Liu WW et al. (2015) Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138:2493–2504

    Google Scholar 

  63. Cirak R, Fowley AR, Hermann R et al. (2013) ISPD mutations are common cause of congenital and limb girdle muscular dystrophy. Brain 136:269–281

    Google Scholar 

  64. Lee H, Nevarez L, Lachman RS, Wilcox WR (2015) A second locus for schneckenbecken dysplasia identified by a mutation in the gene encoding inositol polyphosphate phosphatase-like 1 (INPPL1). Am J Med Genet 167:A2470–2473

    Google Scholar 

  65. Lindhurst MJ, Parker VER, Payne F et al. (2012) Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat Genet 44:928–933

    Google Scholar 

  66. Keppler-Noreuil KM, Sapp JC, Marjorie MJ et al. (2014) Clinical Delineation and Natural History of the PIK3CA-Related Overgrowth Spectrum. Am J Med Genet 1713–1733

    Google Scholar 

  67. Hadchouel A, Wieland T, Griese M et al. (2015) Biallelic mutations of methionyl-tRNA synthetase cause a specific type of pulmonary alveolar proteinosis prevalent on Reunion Island. Am J Hum Genet 96:826–831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Marie Saudubray or Angels Garcia-Cazorla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saudubray, JM., Garcia-Cazorla, A. (2016). Clinical Approach to Inborn Errors of Metabolism in Pediatrics. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics