Skip to main content

Funktionell-neuroanatomische und neuropathologische Grundlagen psychischer Erkrankungen

  • Chapter
  • First Online:
Psychiatrie, Psychosomatik, Psychotherapie

Part of the book series: Springer Reference Medizin ((SRM))

  • 35k Accesses

Zusammenfassung

Neben psychosozialen Einflüssen, die über das Prinzip der Neuroplastizität Hirnstruktur und -funktion nachhaltig beeinflussen können, spielen primär hirnpathologische Prozesse nicht nur bei der Verursachung hirnorganischer Psychosyndrome sondern auch bei schizophrenen Erkrankungen und affektiven Störungen eine bedeutende Rolle. In den letzten Jahren zeigte sich, dass weniger eine Pathologie der Nervenzellkörper sondern Veränderungen der Zwischenzellstubstanz, des sog. Neuropils und der Synapsen, der Gliazellen sowie neuroinflammatorische Prozesse wesentliche Teilursachen von psychotischen oder affektiven Störungen sind. Zum besseren Verständnis der neuropathologischen Grundlagen dieser psychischen Störungen werden zunächst die funktionell-neuroanatomischen Grundlagen der zerebralen Informationsverarbeitung, insbesondere die Interaktion von kortikalen und limbischen Funktionen erläutert. Neben den Erkenntnissen aus struktur- und funktionsbildgebenden Verfahren werden die histopathologischen Befunde zu Interneuronen und den verschiedenen Gliazelltypen bei Schizophrenen und Depressiven dargestellt. Auf Dysfunktionen des limbischen und des Belohnungssystems bei psychischen Störungen wird besonders eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Adriano F, Caltagirone C, Spalletta G (2012) Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist 18(2):180–200

    Article  PubMed  Google Scholar 

  • Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Brain Res Rev 52:293–304

    Article  CAS  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE, Jones EG (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53:425–436

    Article  CAS  PubMed  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154:1010–1012

    Article  CAS  PubMed  Google Scholar 

  • Allin M, Murray R (2002) Schizophrenia: a neurodevelopmental or neurodegenerative disorder. Curr Opin Psychiatry 15:9–15

    Article  Google Scholar 

  • Arnold SE, Hyman BT, van Hösen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    Article  CAS  PubMed  Google Scholar 

  • Baumann B, Bogerts B (2001) Neuroanatomical studies on bipolar disorders. Br J Psychiatry Suppl 41:142–147

    Article  Google Scholar 

  • Baumann B, Danos P, Diekmann S et al (1999a) Tyrosine hydroxylase immunoreactivity in the locus coeruleus is reduced in depressed non-suicidal patients but normal in depressed suicide patients. Eur Arch Psychiatry Clin Neurosci 249:212–219

    Article  CAS  PubMed  Google Scholar 

  • Baumann B, Danos P, Krell D et al (1999b) Unipolar-bipolar dichotomy of mood disorders is supported by noradrenergic brainstem system morphology. J Affect Disord 54:217–224

    Article  CAS  PubMed  Google Scholar 

  • Baumann B, Bielau H, Krell D et al (2002) Circumscribed numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med 32:93–103

    Article  CAS  PubMed  Google Scholar 

  • Bechter K (2013) Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 42:71–91

    Article  CAS  PubMed  Google Scholar 

  • Beckmann H, Jakob H, Senitz D (2006) The development concept of „endogenous psychoses“. Dialogues Clin Neurosci 8:101–108

    PubMed  PubMed Central  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52:1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry 44:608–616

    Article  CAS  PubMed  Google Scholar 

  • Bernstein H-G, Krell D, Baumann B et al (1998a) Morphometric and immunohistochemical studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33:125–132

    Article  CAS  PubMed  Google Scholar 

  • Bernstein H-G, Stanarius A, Baumann B, Henning H, Krell D, Falkai P, Bogerts B (1998b) Nitric oxide synthase containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the nucleus paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Klix M, Dobrowolny H, Brisch R, Steiner J, Bielau H, Gos T, Bogerts B (2012) A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci 262(8):637–646

    Article  PubMed  Google Scholar 

  • Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B (2015a) Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015b) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161(1):4–18

    Article  PubMed  Google Scholar 

  • Bielau H, Trubner K, Krell D, Agelink MW, Bernstein HG, Stauch R, Mawrin C, Danos P, Gerhard L, Bogerts B, Baumann B (2005a) Volume deficits of subcortical nuclei in mood disorders A postmortem study. Eur Arch Psychiatry Clin Neurosci 255:401–412

    Article  PubMed  Google Scholar 

  • Bielau H, Mawrin C, Krell D, Agelink MW, Trübner K, Davis R et al (2005b) Differences in activation of the dorsal raphe nucleus depending on performance of suicide. Brain Res 1039(1–2):43–52. doi:10.1016/j.brainres.2005.01.055

    Article  CAS  PubMed  Google Scholar 

  • Bielau H, Brisch R, Bernard-Mittelstaedt J, Dobrowolny H, Gos T, Baumann B, Mawrin C, Bernstein HG, Bogerts B, Steiner J (2012) Immunohistochemical evidence for impaired nitric oxide signaling of the locus coeruleus in bipolar disorder. Brain Res 1459:91–99

    Article  CAS  PubMed  Google Scholar 

  • Bielau H, Brisch R, Gos T, Dobrowolny H, Baumann B, Mawrin C, Kreutzmann P, Bernstein HG, Bogerts B, Steiner J (2013) Volumetric analysis of the hypothalamus, amygdala and hippocampus in non-suicidal and suicidal mood disorder patients – a post-mortem study. CNS Neurol Disord Drug Targets 12(7):914–920

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, Bloomfield MA, Bonoldi I, Kalk N, Turkheimer F, McGuire P, de Paola V, Howes OD (2016) Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C] PBR28 PET brain imaging study. Am J Psychiatry 173(1):44–52

    Article  PubMed  Google Scholar 

  • Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophrenia Bull 23:423–435

    Article  CAS  Google Scholar 

  • Bogerts B, Lieberman J (1993) Neuropathology in the study of psychiatric disease. In: Costa e Silva ACJ, Nadelson CC (Hrsg) International review of psychiatry, Bd 1. American Psychiatric Press, Washington, DC, S 515–555

    Google Scholar 

  • Bogerts B, Steiner J, Bernstein HG (2009) Brain abnormalities in schizophrenia. In: Kasper S, Papadimitriou GN (Hrsg) Schizophrenia – biopsychosocial approaches and current challenges. Informa, London, S 99–116

    Google Scholar 

  • Bora E, Fornito A, Yücel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67(11):1097–1105

    Article  PubMed  Google Scholar 

  • Bora E, Fornito A, Pantelis C, Yücel M (2012) Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 138(1–2):9–18

    Article  PubMed  Google Scholar 

  • Borgwardt S, Lang UE (2015) Veränderungen von Hirnvolumina durch Antipsychotika bei Schizophrenie? Neue Evidenz durch Metaanalysen struktureller Bildgebungsstudien. Nervenarzt 86:74–76

    Article  CAS  PubMed  Google Scholar 

  • Bowley MP, Drevets WC, Ongür D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52(5):404–412

    Article  PubMed  Google Scholar 

  • Braun K, Bogerts B (2001) Experience guided neuronal plasticity. Significance for pathogenesis and therapy of psychiatric diseases. Nervenarzt 72:3–10

    Article  CAS  PubMed  Google Scholar 

  • Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35(3):834–846

    Article  CAS  PubMed  Google Scholar 

  • Brisch R, Bernstein H-G, Stauch R, Dobrowolny H, Krell D, Truebner K et al (2008) The volumes of the fornix in schizophrenia and affective disorders: a post-mortem study. Psychiatry Res 164(3):265–273

    Article  PubMed  Google Scholar 

  • Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Müller UJ, Bernstein HG, Bogerts B, Steiner J (2012) Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun 26(8):1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Cannon TD (2016) Deciphering the genetic complexity of schizophrenia. JAMA Psychiatry 73(1):5–6

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington HL et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389. doi:10.1126/science.1083968

    Article  CAS  PubMed  Google Scholar 

  • Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, Wu H, Kinon B, Ashtari M (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 151(10):1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 102(43):15653–15658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001a) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55(5):585–595

    Article  CAS  PubMed  Google Scholar 

  • Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001b) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58(6):545–553

    Article  CAS  PubMed  Google Scholar 

  • Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12(4):386–394

    Article  PubMed  Google Scholar 

  • Danos P, Baumann B, Bernstein H-G (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamo-cortical projection neurons. Psychiatr Res Neuroimag 82:1–10

    Article  CAS  Google Scholar 

  • Davison K, Bagley CR (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system. A review of the literature. In: Hertington RN (Hrsg) Current problems in neuropsychiatry. Br J Psychiatry Special Publication No. 4:113–187

    Google Scholar 

  • De Bellis MD, Clark DB, Beers SR et al (2000) Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157:737–744

    Article  PubMed  Google Scholar 

  • Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JMJ, Lieberman JA (1992a) Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49:531–537

    Article  CAS  PubMed  Google Scholar 

  • Degreef G, Bogerts B, Falkai P, Greve B, Lantos G, Ashtari M, Lieberman J (1992b) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res Neuroimag 45:1–13

    Article  CAS  Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J neurosci Offic J Soc Neurosci 13(9):3839–3847

    CAS  Google Scholar 

  • Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50(11):1801–1807

    Article  PubMed  Google Scholar 

  • Dou W, Palomero-Gallagher N, van Tol MJ, Kaufmann J, Zhong K, Bernstein HG, Heinze HJ, Speck O, Walter M (2013) Systematic regional variations of GABA, glutamine, and glutamate concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 33(31):12698–12704

    Article  CAS  PubMed  Google Scholar 

  • Dracheva S, Elhakem SL, McGurk SR, Davis KL, Haroutunian V (2004) GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 76:581–592

    Article  CAS  PubMed  Google Scholar 

  • Driessen M, Herrmann J, Stahl K, Zwaan M, Meier S, Hill A, Osterheider M, Petersen D (2000) Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Arch Gen Psychiatry 57(12):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988a) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol Psychiatry 24:515–521

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for developmental disturbances in schizophrenia? Schizophr Res 1:157–158

    Article  Google Scholar 

  • Falkai P, Honert WG, David B, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brain of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25:48–53

    Article  CAS  PubMed  Google Scholar 

  • Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10:363–395

    Article  CAS  PubMed  Google Scholar 

  • Förstl H (Hrsg) (2005) Frontalhirn – Funktionen und Erkrankungen. Springer, Heidelberg

    Google Scholar 

  • Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S (2013) Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev 37(8):1680–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glantz LA, Lewis DA (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specifity. Arch Gen Psychiatry 54:943–952

    Article  CAS  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  CAS  PubMed  Google Scholar 

  • Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 251:90–107

    Article  CAS  PubMed  Google Scholar 

  • Gos T, Krell D, Bielau H, Brisch R, Trübner K, Steiner J et al (2008a) Tyrosine hydroxylase immunoreactivity in the locus coeruleus is elevated in violent suicidal depressive patients. Eur Arch Psychiatry Clin Neurosci 258(8):513–520

    Article  PubMed  Google Scholar 

  • Gos T, Krell D, Brisch R, Bielau H, Trübner K, Steiner J et al (2008b) Demonstration of decreased activity of dorsal raphe nucleus neurons in depressed suicidal patients by the AgNOR staining method. J Affect Disord 111(2–3):251–260

    Article  PubMed  Google Scholar 

  • Gos T, Günther K, Bielau H, Dobrowolny H, Mawrin C, Trübner K et al (2009a) Suicide and depression in the quantitative analysis of glutamic acid decarboxylase-Immunoreactive neuropil. J Affect Disord 13(1–2):45–55

    Article  CAS  Google Scholar 

  • Gos T, Krell D, Bielau H, Steiner J, Mawrin C, Trübner K et al (2009b) Demonstration of disturbed activity of orbitofrontal pyramidal neurons in depressed patients by the AgNOR staining method. J Affect Disord 118(1–3):131–138

    Article  CAS  PubMed  Google Scholar 

  • Gos T, Krell D, Bielau H, Steiner J, Trübner K, Brisch R et al (2009c) Demonstration of disturbed activity of external globus pallidus projecting neurons in depressed patients by the AgNOR staining method. J Affect Disord 119(1–3):149–155

    Article  PubMed  Google Scholar 

  • Gray JA (1982) The neuropsychology of anxiety: an enquiry into the function of the septo-hippocampal system. Oxford University Press, Oxford

    Google Scholar 

  • Greenwood R, Bhalla A, Gordon A, Roberts J (1983) Behavior disturbances during recovery from herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 46:809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gur RE, Cowell P, Turetsky BI, Cannon T, Bilker W, Gur RC (1998) A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 55(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Halaris A, Leonhard BE (Hrsg) (2013) Inflammation in psychiatry. Karger, Basel

    Google Scholar 

  • Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55(6):563–569

    Article  PubMed  Google Scholar 

  • Harper CG, Krill JJ, Holloway RL (1985) Brain shrinkage in chronic alcoholics: a pathological study. Br Med J 290:501–504

    Article  CAS  Google Scholar 

  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174:151–162

    Article  CAS  Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Drevets WC (2008) Altered cerebral gamma-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 65(10):1166–1175

    Article  PubMed  Google Scholar 

  • Heinsen H, Gössmann E, Rüb U et al (1996) Variability in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anat 157:226–237

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84

    Article  CAS  PubMed  Google Scholar 

  • Herrmann M, Bartels C, Wallesch CW (1993) Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correaltions and functional implications. J Neurol Neurosurg Psychiatry 56:672–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Schwabe, Basel

    Google Scholar 

  • Huber G (1961) Chronische Schizophrenie. Synopsis klinischer und neuroradiologischer Untersuchungen an defektschizophrenen Anstaltspatienten, Bd 13, Einzeldarstellungen aus der theoretischen und klinischen Medizin. Hüthig, Heidelberg

    Google Scholar 

  • Ibrahim HM, Hogg AJ, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Jonotropic glutamat receptor binding and subunit mRNA expression in thalamic nuclei of schizophrenia. Am J Psychiatry 157:1811–1823

    Article  CAS  PubMed  Google Scholar 

  • Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    Article  CAS  PubMed  Google Scholar 

  • Jarskog LF (2006) Apoptosis in schizophrenia: pathophysiologic and therapeutic considerations. Curr Opin Psychiatry 19:307–312

    Article  PubMed  Google Scholar 

  • Kimoto S, Zaki MM, Bazmi HH, Lewis DA (2015) Altered markers of cortical γ-aminobutyric acid neuronal activity in schizophrenia: role of the NARP gene. JAMA Psychiatry 72(8):747–756

    Article  PubMed  PubMed Central  Google Scholar 

  • Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH (2008) Neural responses to monetary incentives in major depression. Biol Psychiatry 63(7):686–692

    Article  PubMed  Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G (2000) Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 157(5):831–833

    Article  CAS  PubMed  Google Scholar 

  • Krishnan KR, McDonald WM, Escalona PR, Doraiswamy PM, Na C, Husain MM et al (1992) Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Arch Gen Psychiatry 49(7):553–557

    Article  CAS  PubMed  Google Scholar 

  • Kubicki M, Westin CF, Maier SE, Frumin M, Nestor PG, Salisbury DF, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 159:813–820

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrie SM, Abukmeil SS (1998) Brain asbnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: evidence for reduced thickness of periventricular grey matter. Eur Arch Psychiatry Neurol Sci 234:212–219

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  CAS  PubMed  Google Scholar 

  • Li M, Metzger CD, Li W, Safron A, van Tol MJ, Lord A, Krause AL, Borchardt V, Dou W, Genz A, Heinze HJ, He H, Walter M (2014) Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91–100

    Article  CAS  PubMed  Google Scholar 

  • Mann K, Widmann U (1995) Zur Neurobiologie der Alkoholabhängigkeit. Fortschr Neurol Psychiatrie 63:238–247

    Article  CAS  Google Scholar 

  • Mathew I, Gardin TM, Tandon N, Eack S, Francis AN, Seidman LJ, Clementz B, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS (2014) Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. JAMA Psychiatry 71(7):769–777

    Article  PubMed  Google Scholar 

  • McCarley RW, Hsiao JK, Freedman R, Pfefferbaum A, Donchin E (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophr Bull 22:703–725

    Article  CAS  PubMed  Google Scholar 

  • McLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4:407–418

    Article  Google Scholar 

  • McNeil TF, Cantor-Graae E, Weinberger DR (2000) Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157:203–212

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1986) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (Hrsg) Principles of behavioral neurology. Davis, Philadelphia, S 1–70

    Google Scholar 

  • Metzger CD, van der Werf YD, Walter M (2013) Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging-from animal anatomy to in vivo imaging in humans. Front Neurosci 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Millner R (1992) Cortico-hippocampal interplay and the representation of contexts in the brain. Springer, Berlin/Heidelberg/New York/Tokyo

    Google Scholar 

  • Mosebach J, Keilhoff G, Gos T, Schiltz K, Schoeneck L, Dobrowolny H, Mawrin C, Müller S, Schroeter ML, Bernstein HG, Bogerts B, Steiner J (2013) Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss? J Psychiatr Res 47(8):1069–1079

    Article  PubMed  Google Scholar 

  • Müller N, Weidinger E, Leitner B, Schwarz MJ (2015) The role of inflammation in schizophrenia. Front Neurosci 9:372

    Article  PubMed  PubMed Central  Google Scholar 

  • Najjar S, Pearlman DM (2015) Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 161(1):102–112

    Article  PubMed  Google Scholar 

  • Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiatry 71(5):582–584

    Article  PubMed  Google Scholar 

  • Nenadic I, Gaser C, Sauer H (2012) Heterogeneity of brain structural variation and the structural imaging endophenotypes in schizophrenia. Neuropsychobiology 66(1):44–49

    Article  PubMed  Google Scholar 

  • Nenadic I, Maitra R, Langbein K, Dietzek M, Lorenz C, Smesny S, Reichenbach JR, Sauer H, Gaser C (2015) Brain structure in schizophrenia vs. psychotic bipolar I disorder: a VBM study. Schizophr Res 165(2–3):212–219

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin/Heidelberg/New York/Tokyo

    Book  Google Scholar 

  • Northoff G, Waters H, Mooren I, Schlüter U, Diekmann S, Falka P, Bogerts B (1999) Cortical sulcal enlargement in catatonic schizophrenia: a planimetric CT study. Psychiatry Res 91:45–54

    Article  CAS  PubMed  Google Scholar 

  • Osoba A, Hänggi J, Li M, Horn DI, Metzger C, Eckert U, Kaufmann J, Zierhut K, Steiner J, Schiltz K, Heinze HJ, Bogerts B, Walter M (2013) Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus – a DTI study in major depressive disorder. J Affect Disord 49(1–3):116–128

    Article  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Palaniyappan L, Balain V, Liddle PF (2012) The neuroanatomy of psychotic diathesis: a meta-analytic review. J Psychiatr Res 46(10):1249–1256

    Article  PubMed  Google Scholar 

  • Palkovits M, Zaborski L (1979) Neural connections of the hypothalamus. In: Morgane PJ (Hrsg) Anatomy of the hypothalamus. Decker, New York, S 379–509

    Google Scholar 

  • Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30(8):2336–2355

    Article  PubMed  Google Scholar 

  • Perez MM, Trimble MR, Reider I, Murray M (1984) Epileptic psychosis, a further evaluation of PSE profiles. Br J Psychiatry 146:155–163

    Article  Google Scholar 

  • Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8(6):828–834

    Article  CAS  PubMed  Google Scholar 

  • Phillips ML, Ladouceur CD, Drevets WC (2008) A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol psychiatry13(9):829, 833–857

    Google Scholar 

  • Piper M, Beneyto M, Burne TH, Eyles DW, Lewis DA, McGrath JJ (2012) The neurodevelopmental hypothesis of schizophrenia: convergent clues from epidemiology and neuropathology. Psychiatr Clin North Am 35(3):571–584

    Article  PubMed  Google Scholar 

  • Price RB, Shungu DC, Mao X, Nestadt P, Kelly C, Collins KA et al (2009) Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry 65(9):792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone. Neuroendcrinology; 60:436–444

    Google Scholar 

  • Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein H-G (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40(4):557–567

    Article  CAS  PubMed  Google Scholar 

  • Raz S (1993) Structural cerebral pathology in schizophrenia: regional or diffuse? J Abnorm Psychol 102:445–452

    Article  CAS  PubMed  Google Scholar 

  • Rothermundt M, Falkai P, Ponath G, Abel S, Burkle H, Diedrich M, Hetzel G, Peters M, Siegmund A, Pedersen A, Maier W, Schramm J, Suslow T, Ohrmann P, Arolt V (2004) Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 9(10):897–899

    Article  CAS  PubMed  Google Scholar 

  • Salvadore G, van der Veen JW, Zhang Y, Marenco S, Machado-Vieira R, Baumann J, Ibrahim LA, Luckenbaugh DA, Shen J, Drevets WC, Zarate CA Jr (2012) An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. Int J Neuropsychopharmacol 15(8):1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Sartorius A, Henn FA (2007) Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses 69(6):1305–1308

    Article  PubMed  Google Scholar 

  • Savitz J, Nugent AC, Bogers W, Liu A, Sills R, Luckenbaugh DA et al (2010) Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage 49(4):2966–2976

    Article  PubMed  Google Scholar 

  • Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):150–154

    Article  PubMed Central  Google Scholar 

  • Schmitt A, Leonardi-Essmann F, Durrenberger PF, Wichert SP, Spanagel R, Arzberger T, Kretzschmar H, Zink M, Herrera-Marschitz M, Reynolds R, Rossner MJ, Falkai P, Gebicke-Haerter PJ (2012) Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 262(7):565–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Godman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25

    Article  CAS  PubMed  Google Scholar 

  • Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50(9):651–658

    Article  CAS  PubMed  Google Scholar 

  • Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychosis of epilepsy. Br J Psychiatry 109:95–150

    Article  CAS  PubMed  Google Scholar 

  • Staal WG, Hulshoff-Pol HE, Schnack H, Schot AC, Kahn RS (1998) Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 155(12):1784–1786

    Article  CAS  PubMed  Google Scholar 

  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C et al (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42(2):151–157

    Article  PubMed  Google Scholar 

  • Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? Neuroinflammation 8:94

    Article  CAS  Google Scholar 

  • Steiner J, Gos T, Bogerts B, Bielau H, Drexhage HA, Bernstein HG (2013) Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior. CNS Neurol Disord Drug Targets 12(7):971–979. Review

    Article  CAS  PubMed  Google Scholar 

  • Steiner J, Gos T, Handerer H, BernsteinHG BB (2014) Ist eine Aktivierung von Mikrogliazellen von pathophysiologischer Bedeutung? Patienten mit Schizophrenie, Depression oder Suizidalität. Nervenheilkunde 33:790–796

    Google Scholar 

  • Taylor MJ (2014) Could glutamate spectroscopy differentiate bipolar depression from unipolar? J Affect Disord 167:80–84

    Article  CAS  PubMed  Google Scholar 

  • Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 73(1):79–89

    Article  PubMed  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C] PK11195 positron emission tomography study. Biol Psychiatry 64(9):820–822

    Article  PubMed  Google Scholar 

  • Van Tol MJ, Li M, Metzger CD, Hailla N, Horn DI, Li W, Heinze HJ, Bogerts B, Steiner J, He H, Walter M (2014) Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol Med 44(10):2053–2065

    Article  PubMed  Google Scholar 

  • Victor M, Adams RD, Collins G (1989) The Wernicke-Korsakow Syndrome and related neurologic disorders due to alcoholism and malnutrition. Davis, Philadelphia

    Google Scholar 

  • Vogeley K, Schneider-Axmann T, Pfeiffer U et al (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157:34–39

    Article  CAS  PubMed  Google Scholar 

  • Walter M, Bermpohl F, Mouras H, Schiltz K, Tempelmann C, Rotte M et al (2008a) Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 40(4):1482–1494

    Article  PubMed  Google Scholar 

  • Walter M, Stadler J, Tempelmann C, Speck O, Northoff G (2008b) High resolution fMRI of subcortical regions during visual erotic stimulation at 7T. MAGMA 21(1–2):103–111

    Article  PubMed  Google Scholar 

  • Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U et al (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66(5):478–486

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M (2014) Fibrillary astrocytes are decreased in the subgenual cingulate in schizophrenia. Eur Arch Psychiatry Clin Neurosci 264(4):357–362

    Article  PubMed  Google Scholar 

  • Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Young KA, Manaye KF, Liang CL, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li M, Qin W, Demenescu LR, Metzger CD, Bogerts B, Yu C, Walter M (2015) Altered functional connectivity density in major depressive disorder at rest. Eur Arch Psychiatry Clin Neurosci 266(3):239–248

    Google Scholar 

  • Zipurski RB, Marsh L, Lim KO et al (1994) Volumetric assessment of temporal lobe structures in schizophrenia. Biol Psychiatry 35:501–516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Bogerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bogerts, B., Walter, M. (2017). Funktionell-neuroanatomische und neuropathologische Grundlagen psychischer Erkrankungen. In: Möller, HJ., Laux, G., Kapfhammer, HP. (eds) Psychiatrie, Psychosomatik, Psychotherapie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49295-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49295-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49293-2

  • Online ISBN: 978-3-662-49295-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics