Skip to main content

Gene Amplification Mechanisms: The Role of Fragile Sites

  • Conference paper
Genes and Environment in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 154))

Abstract

We studied the early stages of gene amplification in a Chinese hamster cell line and identified two distinct amplification mechanisms, both relying on an unequal segregation of gene copies at mitosis. In some cases, a sequence containing the selected gene is looped out, generating an acentric circular molecule, and amplification proceeds through unequal segregation of such extrachromosomal elements in successive cell cycles. In other cases, the accumulation of intrachromosomally amplified copies is driven by cycles of chromatid breakage, followed by fusion of sister chromatids devoid of a telomere, which leads to bridge formation and further break in mitosis (BFB cycles). We showed that some clastogenic drugs specifically trigger the intrachromosomal amplification pathway and strictly correlated this induction of BFB cycles to the ability of these drugs to activate fragile sites. In three model systems, we also established, that the location of centromeric and telomeric fragile sites relative to the selected genes determines the size and sequence content of the early amplicons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bertoni L, Attolini C, Tessera L, Mucciolo E, Giulotto E (1994) Role of telomeric and nontelomeric ( TTAGGG)n sequences in gene amplification and chromosome stability. Genomics 24: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, Meyers MB (1989) Multidrug resistance (vinca alkaloids, actinomycin D, and anthracycline antibiotics). In: Gupta RS (ed) Drug resistance in mammalian cells. CRC, Boca Raton, 2: 57–88

    Google Scholar 

  • Brison O (1993) Gene amplification and tumor progression. Biochim Biophys Acta 1155: 25–41

    PubMed  CAS  Google Scholar 

  • Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89: 215–225

    Article  PubMed  CAS  Google Scholar 

  • Cowell J (1982) Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu Rev Genet 16: 21–59

    Article  PubMed  CAS  Google Scholar 

  • Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546

    Article  PubMed  CAS  Google Scholar 

  • Kuo MT, Vyas RC, Jiang LX, Hittelman WN (1994) Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells. Mol Cell Biol 14: 5202–5211

    PubMed  CAS  Google Scholar 

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Martin S, Trask B, Hamlin JL (1993) Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in chinese hamster cells. Genes Dev. 7: 605–620

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1942) The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci USA 28: 458–463

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85: 9138–9142

    Article  PubMed  CAS  Google Scholar 

  • Pipiras E, Coquelle A, Bieth A, Debatisse M (1998) Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 17: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Schwab M, Amler LC (1990) Amplification of cellular oncogenes: a predictor of clinical outcome in human cancer. Genes Chromosomes Cancer 1: 181–193

    Article  PubMed  CAS  Google Scholar 

  • Smith KA, Gorman PA, Stark MB, Groves RP, Stark GR (1990) Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell 63: 1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Smith KA, Stark MB, Gorman PA, Stark GR (1992) Fusion near telomeres occur very early in the amplification of CAD genes in Syrian hamster cells. Proc Natl Acad Sci USA 89: 5427–5431

    Article  PubMed  CAS  Google Scholar 

  • Stahl F, Wettergren Y, Levan G (1992) Amplicon structure in multi-drug-resistant murine cells: a non-rearranged region of genomic DNA corresponding to large circular DNA. Mol Cell Biol 12: 1179–1187

    PubMed  CAS  Google Scholar 

  • Toledo F, LeRoscouet D, Buttin G, Debatisse M (1992a) Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J 11: 2665–2673

    PubMed  CAS  Google Scholar 

  • Toledo F, Smith KA, Buttin G, Debatisse M (1992b) The evolution of the amplified adenylate deaminase 2 domains in Chinese hamster cells suggests the sequential operation of different mechanisms of DNA amplification. Mutat Res 276: 261–273

    PubMed  CAS  Google Scholar 

  • Toledo F, Buttin G, Debatisse M (1993) The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Curr Biol 3: 255–264

    Article  PubMed  CAS  Google Scholar 

  • Trask B, Hamlin J (1989) Early dihydrofolate reductase gene amplification events in CHO cells usually occur on the same chromosome arm as the original locus. Genes Dev 3: 1913–1925

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Debatisse, M., Coquelle, A., Toledo, F., Buttin, G. (1998). Gene Amplification Mechanisms: The Role of Fragile Sites. In: Schwab, M., Rabes, H.M., Munk, K., Hofschneider, H.P. (eds) Genes and Environment in Cancer. Recent Results in Cancer Research, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46870-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46870-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46872-8

  • Online ISBN: 978-3-642-46870-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics