Skip to main content

Akustisch evozierte Potenziale (AEP)

  • Chapter
Objektive Audiometrie im Kindesalter

Zusammenfassung

Das Kapitel enthält alle in der Praxis angewendeten Verfahren der elektrischen Reaktionsaudiometrie (ERA) zur Messung und audiologischen Interpretation der akustisch evozierten Potenziale (AEP). Es ist gemäß der heutigen Sichtweise konsequent in transiente und stationäre Reizantworten unterteilt. Dem steht die Unterteilung nach der Latenzzeit gegenüber, von den frühen, mit der Elektrocochleographie (ECochG) und BERA (brainstem electric response audiometry) gemessenen FAEP bis hin zu den späten (kortikalen) mit der CERA gemessenen SAEP und den ereigniskorrelierten Potentialen (EKP oder ERP). Die diagnostischen Aussagen gründen sich auf den elementaren Nachweis der Reizantwort bis zu ihrer Beschreibung durch differenzierte Kriterien (Morphologie, Latenzzeit, Amplitude, Latenzdifferenzen, Seitendifferenzen). Ausnahmen bilden die im Rahmen des Neugeborenen-Hörscreenings eingesetzten AABR (automated auditory brainstem responses) und die ASSR (auditory steady state responses), die rein dichotom genutzt werden und sich dadurch gut für eine automatische Auswertung eignen. Mit Berücksichtigung auch der aktuellen Entwicklungen wie der Chirp-BERA wird die Leistungsstärke der AEP in Bezug auf die Bestimmung von Identität und Ausmaß einer Hörstörung verdeutlicht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Überblick

  • Davis H, Yoshie N (1963) Human cortical response to auditory stimuli. Physiologist 6(3):164

    Google Scholar 

  • Hoth S (2009b) Die Schwelle in der Begriffswelt des Audiologen. Z Audiol 48(1):46–49

    Google Scholar 

  • Hoth S (2013) Die Steigung der Diskriminationsfunktion als universelles Maß zur Beurteilung der Güte von Methoden der objektiven Schwellenbestimmung. Z Audiol 52(2):61–69

    Google Scholar 

  • Hoth S, Lenarz T (1994) Elektrische Reaktions-Audiometrie. Springer, Heidelberg, ISBN 3-540-57667-3

    Google Scholar 

  • Hoth S, Janssen T, Mühler R, Walger M, Wiesner T (2012) Empfehlungen der AGERA zum Einsatz objektiver Hörprüfmethoden im Rahmen der pädaudiologischen Konfirmationsdiagnostik (Follow-up) nach nicht bestandenem Neugeborenen-Hörscreening. HNO 60:1100–1102

    Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I: Evaluation of components. Electroencephal Clin Neurophysiol 36:179-190

    Google Scholar 

Elektrocochleografie (ECochG)

  • Eggermont JJ, Odenthal DW, Schmidt PH, Spoor A (1974) Electrocochleography: Basic principles and clinical application. Acta Otolaryngol Suppl. 310:1–84

    Google Scholar 

  • Gibson WPR, Sanli H (2000) The role of round window electrophysiological techniques in the selection of children for cochlear implants. Adv Otorhinolaryngol 57:148–151

    Google Scholar 

  • Lehnhardt E, Laszig R (2009) Praxis der Audiometrie. 9. Aufl. Thieme, Suttgart

    Google Scholar 

  • McMahon CM, Patuzzi RB, Gibson WPR, Sanli H (2008) Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist. Ear Hear 29(3):314–325

    Google Scholar 

  • Picton TW (2011) Electrocochleography: From song to synapse. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego

    Google Scholar 

  • Schoonhoven R (2007) Responses from the cochlea: cochlear microphonic, summating potential and compound action potential. In: RF Burkard, M Don and JJ Eggermont (eds) Auditory Evoked Potentials: basic principles and clinical application. Wolters Kluwer, Lippincott, Williams & Wilkins, Baltimore, Philadelphia, pp 180–198

    Google Scholar 

  • Wever EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustic stimulation. Proc Natl Acad Sci 16:344–350

    Google Scholar 

Frühe akustisch evozierte Potenziale (FAEP) und BERA

  • Baldwin M, Watkin, P (2013) Predicting the degree of hearing loss using Klick auditory brainstem response in babies referred from newborn hearing screening. Ear Hear 34:361–369

    Google Scholar 

  • Beattie RC (1998) Normative wave V latency-intensity functions using the EARTONE 3A insert earphone and the Radioear B-71 bone vibrator. Scand Audiol 27:120–126

    Google Scholar 

  • Canale A, Dagna F, Lacilla M, Piumetto E, Albera R (2012) Relationship between pure tone audiometry and tone burst auditory brainstem response at low frequencies gated with Blackman window. Eur Arch Otorhinolaryngol 269:781–785

    Google Scholar 

  • Cebulla M, Elberling C (2010) Auditory brain stem responses evoked by different chirps based on different delay models. J Am Acad Audiol 21:452–460

    Google Scholar 

  • Don M, Elberling C (1996) Use of quantitative measures of auditory brain-stem response peak amplitude and residual background noise in the decision to stop averaging. J Acoust Soc Am 99:491–500

    Google Scholar 

  • Elberling C, Don M (2010) A direct approach for the design of chirp stimuli used for the recording of auditory brainstem responses. J Acoust Soc Am 128:2955–2964

    Google Scholar 

  • Ferm I, Lightfoot G, Stevens J (2013) Comparison of ABR response amplitude, test time, and estimation of hearing threshold using frequency specific chirp and tone pip stimuli in newborns. Int J Audiol 52:419–423

    Google Scholar 

  • Francois M, Teissier N, Barthod G, Nasra Y. (2012) Sedation for children 2 to 5 years of age undergoing auditory brainstem response and auditory steady state responses recordings. Int J Audiol 51:282–286

    Google Scholar 

  • Gorga MP, Kaminski JR, Beauchaine KL, Jesteadt W, Neely ST (1989) Auditory brainstem responses from children three months of three years of age:Normal patterns of response II. J Speech Lang Hear Res 32:281–288

    Google Scholar 

  • Hoth S (1987) Die Kategorisierung von Hörstörungen anhand der Latenzabweichung in der BERA. Laryng Rhinol Otol 66:655–660

    Google Scholar 

  • Hoth S (1991) Veränderungen der frühen akustisch evozierten Potenziale bei Akustikusneurinom. HNO 39:343–355

    Google Scholar 

  • Hoth S, Lenarz T (1994) Elektrische Reaktions-Audiometrie. Springer, Heidelberg, ISBN 3-540-57667-3

    Google Scholar 

  • Lightfoot G, Cairns A, Stevens J (2010) Noise levels required to mask stimuli used in auditory brainstem response testing. Int J Audiol 49:794–798

    Google Scholar 

  • Mühler R, Rahne T, Verhey JL (2013) Auditory brainstem responses to broad-band chirps:Amplitude growth functions in sedated and anaesthetised infants. Int J Pediatr Otorhinolaryngol 77:49–53

    Google Scholar 

  • Picton TW (2011) Acoustic Stimuli:Sounds to charm the brain. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 123–153

    Google Scholar 

  • Picton TW. (2011) Auditory brainstem responses:Peaks along the way. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 213–245

    Google Scholar 

  • Picton TW (2011) Infant hearing assessment. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 449–492

    Google Scholar 

  • Scherg M (1989) Fundamentals of dipole source potenzial analysis. In: Hoke M, Grandori F, Romani FL (eds) Auditory evoked magnetic fields and potentials. Adv Audiol 6, Karger, Basel

    Google Scholar 

  • Scherg M (1991) Akustisch evozierte Potenziale. Grundlagen – Entstehungsmechanismen – Quellenmodell. Kohlhammer, Stuttgart

    Google Scholar 

  • Sininger YS, Abdala C, Cone-Wesson B (1997) Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hear Res 104:27–38

    Google Scholar 

  • Stapells DR, Picton TW, Durieux-Smith A (1994) Electrophysiologic measures of frequency-specific auditoty function. In Jacobson JT, editor. Principles and applications in auditory evoked potentials. Allyn & Bacon, Boston, pp 251–283

    Google Scholar 

  • Stapells DR (2011) Frequency-specific threshold assessment in young infants using the transient ABR and the brainstem ASSR. In: Seewald R, Tharpe AM (eds) Comprehensive handbook of pediatric audiology. Plural Publishing, San Diego, pp 409–448

    Google Scholar 

  • Stevens JC, Lightfoot G (2010) Guidance for Auditory Brainstem Response testing in babies (NHSP Guideline Version 1.1) http://hearing.screening.nhs.uk/audiologyprotocols. Gesehen 25 Apr 2014

Mittlere akustisch evozierte Potenziale (MAEP)

  • Deiber MP, Ibanez V, Bastuji H et al (1989) Changes of middle latency auditory evoked potentials during natural sleep in humans. Neurology 39:806–813

    Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40 Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647

    Google Scholar 

  • Geisler CD, Frishkopf LS, Rosenblith WA (1958) Extracranial responses to acoustic Klicks in man. Science 128:1210–1211

    Google Scholar 

  • Gordon KA, Papsin BC, Harrison RV (2005) Effects of cochlear implant use on the electrically evoked middle latency response in children. Hear Res 204:78–89

    Google Scholar 

  • Hall JW, Bantwal AR, Ramkumar V, Chhabria N (2011) Electrophysiological assessment of hearing with auditory middle latency and auditory late responses. In: Seewald R and Tharpe AM Comprehensive Handbook of Pediatric Audiology. Plural Publishing, San Diego, pp 449–482

    Google Scholar 

  • Kraus N, Smith DI, Reed NL, Stein LK, Cartee C (1985) Auditory middle latency responses in children:effects of age and diagnostic category. Electroenceph Clin Neurophysiol 62(5):343–351

    Google Scholar 

  • Kraus N, McGee T (1992) Electrophysiology of the Human Auditory System. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer Handbook of Auditory Research Vol. 2, Springer Verlag, New York, pp 335–403

    Google Scholar 

  • Mason SM, Mellor DH (1984) Brain-stem, middle latency and late cortical evoked potentials in children with speech and language disorders. Electroenceph Clin Neurophysiol 59(4):297–309

    Google Scholar 

  • McGee T and Kraus N (1996) Auditory development reflected by middle latency response. Ear Hear 29(3):419–429

    Google Scholar 

  • McPherson DL, Tures C, Starr A (1989) Binaural interaction of the auditory brainstem potentials and middle latency auditory evoked potentials in infants and adults. Electroencephalogr Clin Neurophysiol 74:124–130

    Google Scholar 

  • Mühler R (2012) Zur Terminologie der stationären Potenziale des auditorischen Systems:Was unterscheidet stationäre und transiente Potenziale? HNO 60:421–426

    Google Scholar 

  • Picton TW (2011) Finding Sources: Forward and backward. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 87–122

    Google Scholar 

  • Picton TW (2011) Middle_Latency Responses: The Brain and the Brawn. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 247–284

    Google Scholar 

  • Ponton CW, Eggermont JJ (2007) Electrophysiological measures of human auditory system maturation. Relationship with neuroanatomy and behaviour. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory Evoked Potentials:basic principles and clinical application. Lippincott Williams & Wilkins, pp 385–402

    Google Scholar 

  • Purdy SC, Kelly AS, Davies MG (2002) Auditory brainstem response, middle latency response, and late cortical evoked potentials in children with learning disabilities. J Am Acad Audiol 13(7):367–382

    Google Scholar 

  • Pratt H (2007) Middle Latency Responses. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory Evoked Potenzials:basic principles and clinical application. Lippincott Williams & Wilkins, pp 463–481

    Google Scholar 

  • Scherg M, von Cramon D. Dipole source potentials of the auditory cortex in normal subjects and in patients with temporal lobe lesions. In: Grandori F, Hoke M, Romani GL (eds) Auditory magnetic fields and electric potentials. Advances in Audiology Vol.6. Karger, Basel, Schweiz, pp 165–193

    Google Scholar 

  • Wolf KE, Goldstein R (1978) Middle component averaged electroencephalic responses to tonal stimuli from normal neonates. Arch Otolaryngol 104(9):185–201

    Google Scholar 

Späte akustisch evozierte Potentiale (SAEP)

  • Carter L, Goldung M, Dillon H, Seymour J (2010) The detection of infant cortical auditory evoked potentials (CAEPs) using statistical and visual detection techniques. J Am Acad Audiol. 21(5):347–356

    Google Scholar 

  • Chang H-W, Dillon H, Carter L, Van Dun B, Young S-T (2012) The relationship between cortical auditory evoked potential (CAEP) detection and estimated audibility in infants with sensorineural hearing loss. International Journal of Audiology 51:663–670

    Google Scholar 

  • Chermak GD, Musiek FE (1997) Central Auditory Processing Disorders. Singular Publishing Group, San Diego, London

    Google Scholar 

  • Davis PA (1939) Effects of acoustic stimuli on the waking human brain. Neurophysiology 2:494–499

    Google Scholar 

  • Davis H, Hirsch SK, Shelnutt H, Bowers C (1967) Further validation of evoked response audiometry (ERA). J Speech Hear Res 10:717–732

    Google Scholar 

  • Eggermont J, Ponton C (2003) Auditory-evoked potential studies of cortical maturation in normal heating and implanted children:Correlations with changes in structure and speech perception: Acta Otolaryngologica 123(2):249–252

    Google Scholar 

  • Eggermont J, Ponton C, Don M, Waring M, Kwong B (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolarynfologica 117(2):161–163

    Google Scholar 

  • Hall JW, Bantwal AR, Ramkumar V, Chhabria N (2011) Electrophysiological assessment of hearing with auditory middle latency and auditory late responses. In: Seewald R and Tharpe AM (eds) Comprehensive Handbook of Pediatric Audiology. Plural Publishing, San Diego, pp 449–482

    Google Scholar 

  • Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation Trends Neurosci 35(2):111–22

    Google Scholar 

  • Kraus N, McGee T (1992) Electrophysiology of the human auditory system. In: Popper AN, Fay RR (eds) The Mammalian Auditory pathway: Neurophysiology, Springer Verlag, New York, pp 335–403

    Google Scholar 

  • Kurtzberg D, Stapells DR, Wallace IF (1988) Event-related potential assessment of auditory system integrity: Implications for language development. In: Vietze P, Vaughan Jr HG (eds) Early identification of infants with developmental disabilities. Philadelphia:Grune and Stratton, pp 160–180

    Google Scholar 

  • Martin BA, Tremblay KL, Stapells D (2007) Principles and Applications of Cortical Auditory Evoked Potentials. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory Evoked Potentials: basic principles and clinical application. Lippincott Williams&Wilkins, pp 482–-507

    Google Scholar 

  • Martin BA, Tremblay KL, Korczak P (2008) Speech evoked potentials: from the laboratory to the clinic. Ear Hear 29 (3):285–313

    Google Scholar 

  • Picton TW (2011) Finding Sources:Forward and Backward. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 87–122

    Google Scholar 

  • Ponton CW, Eggermont JJ (2007) Electrophysiological measures of human auditory system maturation. Relationship with neuroanatomy and behaviour. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory Evoked Potentials:basic principles and clinical application. Lippincott Williams & Wilkins, pp 385–402

    Google Scholar 

  • Ponton CW, Moore JK, Eggermont J (1999) Prolonged deafness limits auditory system developmental plasticity:evidence from an evoked potentials study in children with cochlear implants. Scand Audiol 28 Suppl 51:13–22

    Google Scholar 

  • Ponton C, Eggermont JJ, Kwong B, Don M (2000) Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol (111):220–236

    Google Scholar 

  • Ponton CW, Eggermont JJ, Khosal D, Kwong B, Don M (2002) Maturation of human central auditory system activity:Separating auditory evoked potentials by dipole source modelling. Clin Neurophysiol (113):407–420

    Google Scholar 

  • Purdy SC, Sharma M, Munro KJ, Morgan CLA (2013) Stimulus level effects on speech-evoked obligatory cortical auditory evoked potentials in infants with normal hearing. Clin Neurophysiol 124:474–480

    Google Scholar 

  • Sharma A, Kraus N, McGee T, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroen Clin Neuro 104:540–545

    Google Scholar 

  • Sharma A, Dorman MF, Spahr AJ (2002) Rapid development of cortical auditory evoked potentials after early cochlear implantation. Neuroreport 13:1365–1368

    Google Scholar 

  • Sharma A, Tobey E, Dorman M, Bharadwaj S, Martin K, Gilley P, Kunkel F (2004) Central auditory maturation and babbling development in infants with cochlear implants. Arch Otolaryngol Head Neck Surg 130:511–516

    Google Scholar 

  • Rugg MD (1984) Event-related potentials and the phonological processing of words and non-words. Neuropsychologia 22:438–443

    Google Scholar 

  • Starr A, Amlie RN, Martin WH, Sanders S (1977) Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 60:831–839

    Google Scholar 

  • Tsai ML, Hung KL, Tung WTH, Chiang TR (2012) Age-changed normative auditory event-related potential value in children in Taiwan. Journal of the Formosan Medical Association 111(5):245–252

    Google Scholar 

  • Wunderlich JL, Cone-Wesson BK (2006) Maturation of CAEP in infants and children:a review. Hear Res 212(1–2):212–223

    Google Scholar 

  • Wunderlich JL, Cone-Wesson BK, Shepherd R (2006) Maturation of cortical auditory evoked potential in infants and young children. Hear Res 212(1–2):185–202

    Google Scholar 

Ereigniskorrelierte Potenziale (ERP)

  • Agrawal D, Thorne JD, Viola FC, Timm L, Debener S, Büchner A, Dengler R, Wittfoth M (2012) Electrophysiological responses to emotional prosody perception in cochlear implant users. Neuroimage (Amst) 2:229–238

    Google Scholar 

  • Besson M, Macar F (1987) An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology 24(1):14–25

    Google Scholar 

  • Campanella S, Gomez C, Rossion B, Liard L, Debatisse D, Dubois S, Delinte A, Bruyer R, Crommelinck M, Guérit JM (1999) A comparison between group-average and individual evoked potential analysis. Neurophysiol Clin 29(4):325–38

    Google Scholar 

  • Courchesne E (1990) Chronology of postnatal human brain development: event-related potential, positron emission tomography, myelinogenesis, and synaptogenesis studies. In: Rohrbaugh JW, Parasuraman R, Johnson JrR (eds) Event-related brain potentials: basic issues and applications. University Park Press, New York Oxford, pp 210–241

    Google Scholar 

  • Fuchigami T, Okubo O, Jujita Y et al (1993) Auditory event-related potentials and reaction time in children: evaluation of cognitive development. Dev Med Child Neurol 35:230–237

    Google Scholar 

  • Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Näätänen R (1995) Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole model analysis. Journal of Cognitive Neuroscience 7(2):133–143

    Google Scholar 

  • Gilley PM et al (2006) Minimization of cochlear implant stimulus artefact in cortical auditory evoked potentials. Clin Neurophysiol 117:1772–1782

    Google Scholar 

  • Goodin DS, Squires KC, Starr A (1983) Variations in early and late event-related components of the auditory evoked potential with task difficulty. Electroencephalogr Clin Neurophysiol 55(6):680–686

    Google Scholar 

  • Hahne A, Friederici AD (2002) Differenzial task effects on semantic and syntactic processes as revealed by ERPs. Cognitive Brain Research 13:339–356

    Google Scholar 

  • Hahne A, Eckstein K, Friederici A (2004) Brain signatures of syntactic and semantic processes during children’s language developement. Journal of Cognitive Neuroscience 16:1302–1318

    Google Scholar 

  • Hall JW, Bantwal AR, Ramkumar V, Chhabria N (2011) Electrophysiological assessment of hearing with auditory middle latency and auditory late responses. In: Seewald R, Tharpe AM (eds) Comprehensive Handbook of Pediatric Audiology. Plural Publishing, San Diego, pp 449–482

    Google Scholar 

  • Igelmund P, Meister H, Brockhaus-Dumke A, Fürstenberg D, von Wedel H, Walger M (2009) P300 und Reaktionszeit als Maß für die Höranstrengung von CI-Trägern bei der Lautdiskrimination im Störschall. 13. Jahrestagung der DGA

    Google Scholar 

  • Jing H, Benasich AA (2006) Brain responses to tonal changes in the first two years of life. Brain and Development 28:247–256

    Google Scholar 

  • Johnson JM (2009) Late auditory event-related potentials in children with cochlear implants: a review. Developmental Neuropsychology 34(6):701–720

    Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205

    Google Scholar 

  • Kutas M, Van Petten C (1994) Psycholinguistics electrified. Event-related brain potenzial investigations. In: Gernsbacher MA (eds) Handbook of Psycholinguistics, Academic Press, San Diego, pp 83–143

    Google Scholar 

  • Korczak PA, Kurtzberg D, Stapells DR (2005) Effects of sensorineural hearing loss and personal hearing aids on cortical event-related potentials and behavioural measures of speech-sound processing. Ear and Hearing 26:165–185

    Google Scholar 

  • Kraus N, McGee T (1992) Electrophysiology of the human auditory system. In: Popper AN, Fay RR (eds) The Mammalian Auditory pathway: Neurophysiology, Springer Verlag, New York, pp 335–403

    Google Scholar 

  • Kurtzberg D, Hilpert PL, Kreuzer JA, et al (1984) Differenzial maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birth weight infants. Dev Med Child Neurol 26:466–475

    Google Scholar 

  • Kurtzberg D, Stapells DR, Wallace IF (1988) Event-related potential assessment of auditory system integrity: implications for language development. In: Vietze P, Vaughan HG (eds) Early identification of infants with developmental disabilities. Grune and Stratton, Philadelphia, pp 160–180

    Google Scholar 

  • Kurtzberg D, Vaughan HG, Kreuzer JA, et al (1995) Developmental studies and clinical application of mismatch negativity: problems and prospects. Ear Hear 16:104–116

    Google Scholar 

  • Leppänen PH, Guttorm TK, Pihko E, et al (2004) Maturational effects on newborn ERPs measured in the mismatch negativity paradigm. Exp Neurol 190(Suppl 1):99–101

    Google Scholar 

  • Ludwig A (2009) Psychoakustische und elektrophysiologische Untersuchungen zu zentral-auditiven Verarbeitungsstörungen während der Kindesentwicklung. Leipziger Universitätsverlag GmbH

    Google Scholar 

  • Ludwig AA, Rübsamen R, Dörrscheidt GJ, Kotz SA (2012) Age-related dissociation of sensory and decision-based auditory motion processing. Front Hum Neurosci 6(64):1–12

    Google Scholar 

  • Martin BA, Shafer VL, Morr ML, et al (2003) Maturation of mismatch negativity: a scalp current density analysis. Ear Hear 24:463–471

    Google Scholar 

  • Martin BA, Tremblay KL, Stapells D (2007) Principles and Applications of Cortical Auditory Evoked Potenzials. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory Evoked Potenzials: basic principles and clinical application. Lippincott Williams&Wilkins, pp 482–-507

    Google Scholar 

  • Martin BA, Tremblay KL, Korczak P (2008) Speech evoked potentials: from the laboratory to the clinic. Ear Hear 29 (3):285–313

    Google Scholar 

  • McCallum WC, Farmer SF, Pocock PV (1984) The effects of physical and semantic incongruities on auditory event-related potentials. Electroencephalogr Clin Neurophysiol 59(6):477–488

    Google Scholar 

  • Näätänen R (1975) Selective attention and evoked potentials in humans--a critical review. Biol Psychol 2(4):237–307

    Google Scholar 

  • Näätänen R, Michie PT (1979) Early selective-attention effect on evoked potenzial: a crtical review and reinterpretation. Biol Psychol 8(2):81–136

    Google Scholar 

  • Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329

    Google Scholar 

  • Osterhout L, Holcomb P (1992) Event-related brain potentials elicited by syntactic anomaly. Journal of Memory and Language 31:1–22

    Google Scholar 

  • Osterhout L, Holcomb P (1993) P600 Event-related potentials and syntactic anomaly: evidence of anomaly detection during the perception of continuous speech. Lang. Cogn. Processes 8:413–437

    Google Scholar 

  • Picton TW (2011) Endogenous auditory evoked potentials: attention must be paid. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 399–447

    Google Scholar 

  • Picton TW, Hillyard SA (1974) Human auditory evoked potentials. II. Effects of attention. Electroencephalogr Clin Neurophysiol 36(2):191–199

    Google Scholar 

  • Ponton CW, Eggermont JJ, Don M et al (2000) Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiol Neurootol 5:167–185

    Google Scholar 

  • Rahne T, Sussman E (2009) Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. Eur J Neurosci. 29(1):205–211

    Google Scholar 

  • Sandmann P, Kegel A, Eichele T, Dillier N, Lai W, Bendixen A, Debener S, Jancke L, Meyer M (2012) Neurophysiological evidence of impaired musical sound perception in cochlear-implant users. Clin Neurophysiol 121(12):2070–2082

    Google Scholar 

  • Scherg M, Vajsar J, Picton TW (1989) A source analysis of the late human auditory evoked potentials. Journal of Cognitive Neuroscience 1(4):336–355

    Google Scholar 

  • Squires NK, Squires KC, Hillyard SA (1975) Two varietes of long-latency positive waves evoked by unpredictable auditory stimuli. Electroencephalography and Clinical Neurophysiology 38:387–401

    Google Scholar 

  • Starr A, Golob EJ (2007) Cognitive factors modulating auditory cortical potentials. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory Evoked Potenzials: basic principles and clinical application. Lippincott Williams&Wilkins, pp 508–524

    Google Scholar 

  • Sutton S, Braren M, Zubin J (1965) Evoked potenzial correlates of stimulus uncertainty. Science 150:1187–1188

    Google Scholar 

  • Timm L, Agrawal D, C Viola F, Sandmann P, Debener S, Büchner A, Dengler R, Wittfoth M (2013) Temporal feature perception in cochlear implant users. PLoS One. 2012, 7(9)

    Google Scholar 

  • Tsai ML, Hung KL, Tung WTH, Chiang TR (2012) Age-changed normative auditory event-related potential value in children in Taiwan. Journal of the Formosan Medical Association 111 (5):245–252

    Google Scholar 

  • Uwer R, von Suchodoletz W (2000) Stability of mismatch negativities in children. Clin Neurophysiol 111(1): 45–52

    Google Scholar 

  • Uwer R, Albrecht R, von Suchodoletz W (2002) Automatic processing of tones and speech stimuli in children with specific language impairment. Dev Med Child Neurol 44(8):527–532

    Google Scholar 

  • Van Petten C, Kutas M (1991) Influences of semantic and syntactic context on open and closed class words. Mem Cong 19:95–112

    Google Scholar 

  • Wilson WJ, Arnott W, Henning C (2013) A systematic review of electrophysiological outcomes following auditory training in school-age children with auditory processing deficits. Int J Audiol 52(11):721–730

    Google Scholar 

Stationäre Potenziale des auditorischen Systems (ASSR)

  • Aiken SJ, Picton TW (2008) Envelope and spectral frequency-following responses to vowel sounds. Hearing Research

    Google Scholar 

  • Anderson S, Skoe E, Chandrasekaran B, Kraus N (2010) Brainstem correlates of speech-in-noise perception in children. Hearing Research

    Google Scholar 

  • Chou YF, Chen PR, Yu SH, Wen YH, Wu HP (2012) Using multi-stimulus auditory steady state response to predict hearing thresholds in high-risk infants. Eur Arch Otorhinolaryngol

    Google Scholar 

  • Cebulla M, Stürzebecher E, Elberling C (2006) Objective detection of auditory steady-state responses: comparison of one-sample and q-sample tests. J Am Acad Audiol 17:93–103

    Google Scholar 

  • Dimitrijevic A, Ross B (2008) Neural generators of the auditory steady-state response. In: Rance G (ed) Auditory steady-state responses. Plural Publishing, San Diego, pp 83–107

    Google Scholar 

  • Dimitrijevic A, John MS, van Roon P, Picton TW (2001) Human auditory steady-state responses to tones independently modulated in both frequency and amplitude. Ear Hear 22:100–111

    Google Scholar 

  • Dimitrijevic A, John MS, van Roon P, Purcell D, Adamonis J, Ostroff J, Nedzelski JM, Picton TW (2002) Estimating the audiogram using multiple auditory steady-state responses. J Am Acad Audiol 13:205–224

    Google Scholar 

  • Elberling C, Don M, Cebulla M, Stürzebecher E (2007) Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay. J Acoust Soc Am 122:2772–2785

    Google Scholar 

  • Francois M, Teissier N, Barthod G, Nasra Y (2012) Sedation for children 2 to 5 years of age undergoing auditory brainstem response and auditory steady state responses recordings. Int J Audiol 51:282–286

    Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Nat Acad Sci 78:2643–2647

    Google Scholar 

  • Han D, Mo L, Liu H, Chen J, Huang L (2006) Threshold estimation in children using auditory steady-state responses to multiple simultaneous stimuli. ORL J Otorhinolaryngol Relat Spec 68:64–68

    Google Scholar 

  • Hatton J, Stapells DR (2011) The efficiency of the single-versus multiple-stimulus auditory steady state responses in infants. Ear Hear; 32:349–357

    Google Scholar 

  • Herdman AT, Stapells DR (2003) Auditory steady-state response thresholds of adults with sensorineural hearing impairments. Int J Audiol 42:237–248

    Google Scholar 

  • Herdman AT, Lins O, van Roon P, Stapells DR, Scherg M, Picton TW (2002) Intracerebral sources of human auditory steady-state responses. Brain Topogr 15:69–86

    Google Scholar 

  • Hoth S (2013) Die Steigung der Diskriminationsfunktion als universelles maß zur Beurteilung der Güte von Methoden der objektiven Schwellenbestimmung. Z Audiol 52(2):61–69

    Google Scholar 

  • John MS, Picton TW (2000) MASTER: A Windows program for recording multiple auditory steady-state responses. Comput Methods Programs Biomed 61:125–150

    Google Scholar 

  • John MS, Purcell DW (2008) Introduction to technical principles of auditory steady-state response testing. In: Rance G (ed) Auditory steady-state responses. Plural Publishing, San Diego, pp 11–53

    Google Scholar 

  • John MS, Lins OG, Boucher BL, Picton TW (1998) Multiple Auditory Steady-state Responses (MASTER): Stimulus and recording parameters. Audiology 37:59–82

    Google Scholar 

  • John MS, Purcell D, Dimitrijevic A, Picton TW (2002) Advantages and caveats when recording steady-state responses to multiple simultaneous stimuli. J Am Acad Audiol 13:246–259

    Google Scholar 

  • Krishnan A (2007) The Frequency-following response. In: Burkard RF, Eggermont JJ, Don M (eds) Auditory Evoked Potentials – Basic principles and Clinical Application. Lippincott Williams & Wilkins, Baltimore, pp 229–253

    Google Scholar 

  • Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21:179–192

    Google Scholar 

  • Lins OG, Picton TW (1995) Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr. Clin.Neurophysiol 96:420–432

    Google Scholar 

  • Luts H, Wouters J, Desloovere C (2006) Clinical application of dichotic multiple-stimulus auditory steady-state responses in high-risk newborns and young children. Audiology and Neurotology 11:24–37

    Google Scholar 

  • Mühler R (2010) Stationäre evozierte Potenziale des auditorischen Systems. Mensch und Buch, Berlin

    Google Scholar 

  • Mühler R (2012) Zur Terminologie der stationären Potenziale des auditorischen Systems: Was unterscheidet stationäre und transiente Potenziale? (On the terminology of auditory steady-state responses. What differenziates steady-stateand transient potentials?) HNO 60:421–426

    Google Scholar 

  • Mühler R, Rahne T (2009) Audiometric thresholds estimated by auditory steady-state responses – influence of EEG amplitude and test duration on accuracy. HN= 57:44–50

    Google Scholar 

  • Mühler R, Mentzel K, Verhey J (2012) Fast hearing-threshold estimation using multiple auditory steady-state responses with narrow-band chirps and adaptive stimulus patterns. The Scientific World Journal 2012, Article ID 192178, doi:10.1100/2012/192178

    Google Scholar 

  • Mühler R, Rahne T, Mentzel K, Verhey JL (2014) 40-Hz multiple auditory steady-state responses to narrow-band chirps in sedated and anaesthetized infants. Int J Pediatr Otorhi 78:762–768

    Google Scholar 

  • Perez-Abalo MC, Savio G, Torres A, Martin V, Rodriguez D, Galan L (2001) Steady-state responses to multiple amplitude modulated tones: An optimized method to test frequency-specific thresholds in hearing-impaired children and normal hearing subjects. Ear Hear 22:200–211

    Google Scholar 

  • Pethe J, Mühler R, Specht H (2001) Dependency of amplitude modulation following responses (AMFR) on the state of vigilance. HNO 49:188–193

    Google Scholar 

  • Picton TW (2007) Audiometry using auditory steady-state responses. In: Burkard RF, Eggermont JJ, Don M (eds) Auditory evoked potentials: Basic principles and clinical applications. Lippicott Williams & Wilkins, Baltimore, pp 441–462

    Google Scholar 

  • Picton TW (2011) Auditory steady-state and following responses. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 285–333

    Google Scholar 

  • Picton TW (2011) Infant hearing assessment. In: Picton TW (ed) Human auditory evoked potentials. Plural Publishing, San Diego, pp 449–492

    Google Scholar 

  • Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219

    Google Scholar 

  • Picton TW, Dimitrijevic A, Perez-Abalo MC, van Roon P (2005) Estimating audiometric thresholds using auditory steady-state responses. J Am Acad Audiol 16:140–156

    Google Scholar 

  • Rance G, Briggs RJ (2002) Assessment of hearing in infants with moderate to profound impairment: the Melbourne experience with auditory steady-state evoked potential testing. Ann Otol Rhinol Laryngol Suppl 189:22–28

    Google Scholar 

  • Rance G, Roper R, Symons L, Moody LJ, Poulis C, Dourlay M, Kelly T (2005) Hearing threshold estimation in infants using auditory steady-state responses. J Am Acad Audiol 16:291–300

    Google Scholar 

  • Ribeiro FM, Carvallo RM, Marcoux AM (2010) Auditory Steady-State Evoked Responses for Preterm and Term Neonates. Audiol Neurootol 15:97–110

    Google Scholar 

  • Rickards FW, Clark GM (1984) Steady-state evoked potentials to amplitude-modulated tones. In: Nodar RH, Barber C (eds) Evoked potentials. Butterworth, Boston MA, pp 163–168

    Google Scholar 

  • Scherf F, Brokx J, Wuyts F, Van De Heyning P (2006) The ASSR: Clinical application in normal-hearing and hearing-impaired infants and adults, comparison with the Klick-evoked ABR and pure-tone audiometry. Int J Audiol 45:281–286

    Google Scholar 

  • Skoe E, Kraus N (2010) Auditory brain stem response to complex sounds: A tutorial. Hearing Research

    Google Scholar 

  • Small SA, Stapells DR (2006) Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing. Ear Hear 27:219–228

    Google Scholar 

  • Stapells DR (2008) The 80-Hz auditory steady-state response compared with other auditory evoked potentials. In: Rance G (ed). Auditory steady-state responses. Plural Publishing, San Diego, pp 149–160

    Google Scholar 

  • Stapells DR (2011) Frequency-specific threshold assessment in young infants using the transient ABR and the brainstem ASSR. In: Seewald R, Tharpe AM (eds) Comprehensive handbook of pediatric audiology. Plural Publishing, San Diego, pp 409–448

    Google Scholar 

  • Stürzebecher E, Cebulla M, Elberling C, Berger T (2006) New efficient stimuli for evoked frequency specific auditory steady-state responses. J Am Acad Audiol 17:448–461

    Google Scholar 

  • Swanepoel D, Schmulian D, Hugo R (2004) Establishing normal hearing with the dichotic multiple-frequency auditory steady-state response compared to an auditory brainstem response protocol. Acta Otolaryngol 124:62–68

    Google Scholar 

  • Tlumak AI, Durrant JD, Delgado RE, Boston JR (2012) Steady-state analysis of auditory evoked potentials over a wide range of stimulus repetition rates: Profile in children vs. adults. Int J Audiol 51:480–490

    Google Scholar 

  • Vander Werff K, Johnson T, Brown C (2008) Behvioural threshold estimation for auditory steady-state response. In Rance G, editor. Auditory steady-state responses. Plural Publishing, San Diego, pp 125–147

    Google Scholar 

  • Van Maanen A, Stapells DR (2005) Comparison of multiple auditory steady-state responses (80 versus 40 Hz) and slow cortical potentials for threshold estimation in hearing-impaired adults. Int J Audiol 44:613–624

    Google Scholar 

  • Van Maanen A, Stapells DR (2010) Multiple-ASSR thresholds in infants and young children with hearing loss. J Am Acad Audiol 21:535–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walger, M., Hoth, S., Mühler, R. (2014). Akustisch evozierte Potenziale (AEP). In: Objektive Audiometrie im Kindesalter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44936-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44936-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44935-2

  • Online ISBN: 978-3-642-44936-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics