Skip to main content

Rho-Kinase Inhibitors

  • Chapter
  • First Online:
Pharmacotherapy of Pulmonary Hypertension

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 218))

Abstract

Pulmonary arterial hypertension (PAH) is a fatal disease with poor prognosis characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary artery hyperconstriction and remodeling; however, the precise mechanism of PAH still remains to be elucidated. Although anticoagulant agents, pulmonary vasodilators, and lung transplantation are currently used for the treatment of PAH, more effective treatment needs to be developed. Rho-kinase causes vascular smooth muscle hyperconstriction and vascular remodeling through inhibition of myosin phosphatase and activation of its downstream effectors. In a series of experimental and clinical studies, it has been demonstrated that Rho-kinase-mediated pathway plays an important role in various cellular functions not only in vascular smooth muscle hyperconstriction but also in actin cytoskeleton organization, cell adhesion and motility, cytokinesis, and gene expressions, all of which may be involved in the pathogenesis of arteriosclerosis. Rho-kinase is activated in animal models of PAH (monocrotaline and chronic hypoxia) associated with enhanced pulmonary vasoconstriction and proliferation, impaired endothelial vasodilator functions, and pulmonary remodeling. Therapeutic application of Rho-kinase inhibitors reverses established experimental pulmonary hypertension. Further, administration or inhalation of Rho-kinase inhibitors exerts acute pulmonary vasodilation in patients with PAH who were refractory to conventional therapies. Taken together, Rho-kinase is a novel and important therapeutic target of PAH, and Rho-kinase inhibitors are a promising new class of drugs for this fatal disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K, Takeshit A (2004) Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 94:385–393

    Article  PubMed  CAS  Google Scholar 

  • Abe K, Morikawa K, Hizume T, Uwatoku T, Oi K, Seto M, Ikegaki I, Asano T, Kaibuchi K, Shimokawa H (2005) Prostacyclin does not inhibit Rho-kinase: an implication for the treatment of pulmonary hypertension. J Cardiovasc Pharmacol 45:120–124

    Article  PubMed  CAS  Google Scholar 

  • Abe K, Tawara S, Oi K, Hizume T, Uwatoku T, Fukumoto Y, Kaibuchi K, Shimokawa H (2006) Long-term inhibition of rho-kinase ameliorates hypoxia-induced pulmonary hypertension in mice. J Cardiovasc Pharmacol 48:280–285

    Article  PubMed  CAS  Google Scholar 

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Dahal BK, Kosanovic D, Pamarthi PK, Sydykov A, Lai YJ, Kast R, Schirok H, Stasch JP, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Schermuly RT (2010) Therapeutic efficacy of azaindole-1 in experimental pulmonary hypertension. Eur Respir J 36:808–818

    Article  PubMed  CAS  Google Scholar 

  • Do e Z, Fukumoto Y, Takaki A, Tawara S, Ohashi J, Nakano M, Tada T, Saji K, Sugimura K, Fujita H, Hoshikawa Y, Nawata J, Kondo T, Shimokawa H (2009) Evidence for rho-kinase activation in patients with pulmonary arterial hypertension. Circ J 73:1731–1739

    Article  PubMed  Google Scholar 

  • Dorfmuller P, Perros F, Balabanian K, Humbert M (2003) Inflammation in pulmonary arterial hypertension. Eur Respir J 22:358–363

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Fukumoto Y, Saji K, Sugimura K, Demachi J, Nawata J, Shimokawa H (2010) Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels 25:144–149

    Article  PubMed  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto Y, Shimokawa H (2011) Recent progress in the management of pulmonary hypertension. Circ J 75:1801–1810

    Article  PubMed  Google Scholar 

  • Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391–392

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto Y, Tawara S, Shimokawa H (2007) Recent progress in the treatment of pulmonary arterial hypertension: expectation for Rho-kinase inhibitors. Tohoku J Exp Med 211:309–320

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto Y, Yamada N, Matsubara H, Mizoguchi M, Uchino K, Yao A, Kihara Y, Kawano M, Watanabe H, Takeda Y, Adachi T, Osanai S, Tanabe N, Inoue T, Nakano T, Shimokawa H (2013) A double-blind, placebo-controlled clinical trial with a Rho-kinase inhibitor in pulmonary arterial hypertension; a pilot efficacy trial. http://dx.doi.org/10.1253/circj.CJ-13-0443. Circ J 77:2691–2625

  • Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333:214–221

    Article  PubMed  CAS  Google Scholar 

  • Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A (2003) Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 93:767–775

    Article  PubMed  CAS  Google Scholar 

  • Higenbottam TW, Laude EA (1998) Endothelial dysfunction providing the basis for the treatment of pulmonary hypertension: Giles f. Filley lecture. Chest 114:72S–79S

    Article  PubMed  CAS  Google Scholar 

  • Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N, Kubota T, Ichiki T, Amano M, Kaibuchi K, Takeshita A (2004) Inflammatory stimuli upregulate rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol 37:537–546

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  PubMed  CAS  Google Scholar 

  • Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N, Nakano T (2006) Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174–178

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893

    PubMed  CAS  Google Scholar 

  • Jiang BH, Tawara S, Abe K, Takaki A, Fukumoto Y, Shimokawa H (2007) Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 49:85–89

    Article  PubMed  CAS  Google Scholar 

  • Kast R, Schirok H, Figueroa-Perez S, Mittendorf J, Gnoth MJ, Apeler H, Lenz J, Franz JK, Knorr A, Hutter J, Lobell M, Zimmermann K, Munter K, Augstein KH, Ehmke H, Stasch JP (2007) Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase. Br J Pharmacol 152:1070–1080

    Article  PubMed  CAS  Google Scholar 

  • Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related Rhoa GPTase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    Article  PubMed  CAS  Google Scholar 

  • Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50:17–24

    Article  PubMed  CAS  Google Scholar 

  • Lohn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O’Connor SE, Ruetten H (2009) Pharmacological characterization of sar407899, a novel Rho-kinase inhibitor. Hypertension 54:676–683

    Article  PubMed  Google Scholar 

  • Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334

    Article  PubMed  CAS  Google Scholar 

  • Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A (2001) Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 38:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A (2002) Suppression of coronary artery spasm by the rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 105:1545–1547

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin VV, McGoon MD (2006) Pulmonary arterial hypertension. Circulation 114:1417–1431

    Article  PubMed  Google Scholar 

  • Mohri M, Shimokawa H, Hirakawa Y, Masumoto A, Takeshita A (2003) Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J Am Coll Cardiol 41:15–19

    Article  PubMed  CAS  Google Scholar 

  • Morishige K, Shimokawa H, Eto Y, Kandabashi T, Miyata K, Matsumoto Y, Hoshijima M, Kaibuchi K, Takeshita A (2001) Adenovirus-mediated transfer of dominant-negative Rho-kinase induces a regression of coronary arteriosclerosis in pigs in vivo. Arterioscler Thromb Vasc Biol 21:548–554

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494–499

    Article  PubMed  Google Scholar 

  • Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem 120:215–228

    Article  PubMed  CAS  Google Scholar 

  • Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of Rhoa/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444–454

    Article  PubMed  CAS  Google Scholar 

  • Pankey EA, Byun RJ, Smith WB 2nd, Bhartiya M, Bueno FR, Badejo AM, Stasch JP, Murthy SN, Nossaman BD, Kadowitz PJ (2012) The Rho kinase inhibitor azaindole-1 has long-acting vasodilator activity in the pulmonary vascular bed of the intact chest rat. Can J Physiol Pharmacol 90:825–835

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Ivanovska J, Kantores C, Van Vliet T, Engelberts D, Kavanagh BP, Enomoto M, Belik J, Jain A, McNamara PJ, Jankov RP (2012) Sustained therapeutic hypercapnia attenuates pulmonary arterial Rho-kinase activity and ameliorates chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Heart Circ Physiol 302:H2599–H2611

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H (2000) Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J 64:1–12

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H (2002) Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol 39:319–327

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H, Rashid M (2007a) Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci 28:296–302

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H, Rashid M (2007b) Rho-kinase inhibitors for cardiovascular medicine. Its rationale and current status. Trends Pharmacol Sci 28:296–302

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, Kuwata K, Kandabashi T, Egashira K, Ikegaki I, Asano T, Kaibuchi K, Takeshita A (1999) Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 43:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2000) Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522(Pt 2):177–185

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    Article  PubMed  CAS  Google Scholar 

  • Tawara S, Fukumoto Y, Shimokawa H (2007) Effects of combined therapy with a Rho-kinase inhibitor and prostacyclin on monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 50:195–200

    Article  PubMed  CAS  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  PubMed  CAS  Google Scholar 

  • Williams RD, Novack GD, van Haarlem T, Kopczynski C (2011) Ocular hypotensive effect of the rho kinase inhibitor ar-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol 152:834–841

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC (2004) Increased arginase II and decreased no synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 18:1746–1748

    PubMed  CAS  Google Scholar 

  • Yasuda T, Tada Y, Tanabe N, Tatsumi K, West J (2011) Rho-kinase inhibition alleviates pulmonary hypertension in transgenic mice expressing a dominant-negative type II bone morphogenetic protein receptor gene. Am J Physiol Lung Cell Mol Physiol 301:L667–L674

    Article  PubMed  CAS  Google Scholar 

  • Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV Jr, Gaine SP, Orens JB, Rubin LJ (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400–1406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ works presented in this article were supported in part by the grants-in-aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan, grants-in-aid for Scientific Research on Innovative Areas (Research in a Proposed Research Area), MEXT, Japan, and Tohoku University Global COE for Conquest of Signal Transduction Diseases with Network Medicine, Sendai, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukumoto, Y., Shimokawa, H. (2013). Rho-Kinase Inhibitors. In: Humbert, M., Evgenov, O., Stasch, JP. (eds) Pharmacotherapy of Pulmonary Hypertension. Handbook of Experimental Pharmacology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38664-0_14

Download citation

Publish with us

Policies and ethics