Skip to main content

Hintergrund/Diagnostische Grundkonzepte

  • Chapter
  • First Online:
Entzündliche Augenerkrankungen

Zusammenfassung

Intraokulare Entzündungen stellen in Europa und weltweit eine wesentliche Ursache schwerwiegender Sehschädigungen dar. In der Altersgruppe der 20- bis 40-jährigen stehen sie als Erblindungsursache zusammen mit der diabetischen Retinopathie an erster Stelle (◘ Tab. 5.1). Es können alle Altersgruppen betroffen sein, allerdings treten die meisten Erkrankungen im Alter zwischen 20 bis 40 Jahren auf. Rezidive werden bei etwa 30 % aller akuten Entzündungen beobachtet. Etwa 50 % aller Patienten weisen eine Grunderkrankung oder assoziierte Merkmale (z. B. HLA-B27 Antigen) auf. Hinweise auf die Pathogenese und das differentialdiagnostische Vorgehen gehen aus ▶ Abschn. 5.1.2, 5.1.4 bzw. 5.1.8 hervor.

Eine Klassifikation intraokularer Entzündungen hat sich klinisch außerordentlich bewährt. Gründe hierfür sind:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Klinisch ermittelt und angelehnt an die Klassifikation der International Uveitis Study Group.

Literatur

Literatur zu Abschn. 5.1

  • Bloch-Michel E, Nussenblatt RB (1987) International Uveitis Study Group recommendations for the evaluation of intraocular inflammatory disease. Am J Ophthalmol 15(103):234–5

    Google Scholar 

  • Davis JL, Madow B, Cornett J, Stratton R, Hess D, Porciatti V, Feuer WJ (2010) Scale for photographic grading of vitreous haze in uveitis. Am J Ophthalmol 150(5):637–641

    Article  PubMed Central  PubMed  Google Scholar 

  • Durrani OM, Tehrani NN, Marr JE, Moradi P, Stavrou P, Murray PI (2004) Degree, duration, and causes of visual loss in uveitis. Br J Ophthalmol 88:1159–1162

    Article  CAS  PubMed  Google Scholar 

  • deSmet MD, Taylor SR, Bodaghi B, Pleyer U, Murray PI, Miserocchi E et al (2011) Understanding uveitis: the impact of research on visual outcomes. Prog Retin Eye Res 30:452–70

    Article  Google Scholar 

  • Herbort CP, Papadia M, Mantovani A (2012) Classification of choroiditis based on inflammatory lesion process rather than fundus appearance: enhanced comprehension through the ICGA concepts of the iceberg and jellyfish effects. Klin Monbl Augenheilkd 229:306–13

    Article  CAS  PubMed  Google Scholar 

  • Hogan MH, Kimura SJ, Thygeson P (1959) Signs and symptoms of uveitis: I. Anterior uveitis. Am J Ophthalmol 47:155

    CAS  PubMed  Google Scholar 

  • Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140(3):509–16

    Article  PubMed  Google Scholar 

  • Jakob E, Reuland MS, Mackensen F, Harsch N, Fleckenstein M, Lorenz HM, Max R, Becker MD (2009) Uveitis subtypes in a german interdisciplinary uveitis center – analysis of 1916 patients. J Rheumatol 36:127–36

    PubMed  Google Scholar 

  • Madow B, Galor A, Feuer WJ, Altaweel MM, Davis JL (2011) Validation of a photographic vitreous haze grading technique for clinical trials in uveitis. Am J Ophthalmol 152(2):170–176

    Article  PubMed  Google Scholar 

  • Nussenblatt RB, Palestine AG, Chan CC, Roberge F (1985) Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology 92:467–71

    Article  CAS  PubMed  Google Scholar 

  • Suttorp-Schulten MS, Rothova A (1996) The possible impact of uveitis in blindness: a literature survey. Br Journal Ophthalmol 1996; 80:844–48

    Article  CAS  Google Scholar 

  • Sen HN, Sangave AA, Goldstein DA, Suhler EB, Cunningham D, Vitale S, Nussenblatt RB (2011) A standardized grading system for scleritis. Ophthalmology 118(4):768–71

    Article  PubMed Central  PubMed  Google Scholar 

  • Tugal-Tutkun I, Herbort CP, Khairallah M (2010) Angiography Scoring for Uveitis Working Group (ASUWOG). Scoring of dual fluorescein and ICG inflammatory angiographic signs for the grading of posterior segment inflammation (dual fluorescein and ICG angiographic scoring system for uveitis). Int Ophthalmol 30(5):539–52

    Article  PubMed  Google Scholar 

  • Tyndall J (1869) On the Blue Colour of the Sky, the Polarization of Skylight, and on the Polarization of Light by Cloudy matter generally. Philosophical Magazine and Journal of Science 37:384–404

    Google Scholar 

Literatur zu Abschn. 5.2

  • Coomes SM, Pelly VS, Wilson M (2013) Plasticity within the αβ+CD4+ T-cell lineage: when, how and what for? Open Biology 3:120157

    Article  PubMed Central  PubMed  Google Scholar 

  • Murphy K (2011) Janeway’s Immunobiology, 8. Aufl. Taylor, Taylor & Francis Group

    Google Scholar 

  • Schroeder K, Tschopp J (2010) The Inflammasomes. Cell 140:821–832

    Article  Google Scholar 

  • Sheehan NJ (2010) HLA-B27: what’s new? Rheumatology 49:621–631

    Article  CAS  PubMed  Google Scholar 

  • Stein-Streilein J, Lucas K (2011) A current understanding of ocular immune privilege. Current Immunology Reviews 7:336–343

    Article  CAS  Google Scholar 

  • Wildner G, Diedrichs-Möhring M (2004) Autoimmune uveitis and antigenic mimicry of environmental antigens. Autoimmunity Reviews 3:383–387

    Article  CAS  PubMed  Google Scholar 

  • Wildner G, Kaufmann U (2013) What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells. Autoimmunity Reviews 12(11):1070–5 doi:http://dx.doi.org/10.1016/j.bbr.2011.03.031

    Article  CAS  PubMed  Google Scholar 

  • Willermain F, Rosenbaum JT, Bodaghi B, Rosenzweig HL, Childers S, Behrend T, Wildner G, Dick A (2012) Interplay between innate and adaptive immunity in the development of non-infectious uveitis. Progress in Retinal and Eye Research 31:182–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Literatur zu 5.3

  • http://www.dog.org/wp-content/uploads/2009/09/LL-Uveitis-anterior-2011-11-30-Endversion.pdf

    Google Scholar 

  • Barisani-Asenbauer T, Maca SM, Mejdoubi L, Emminger W, Machold K, Auer H (2012) Uveitis – a rare disease often associated with systemic diseases and infections – a systematic review of 2619 patients. Orphanet J Rare Dis 29(7):57

    Article  Google Scholar 

  • Davis JL (2012) Diagnostic dilemmas in retinitis and Endophthalmitis. Eye (Lond) 26(2):194–201

    Article  CAS  Google Scholar 

  • Dhoot DS, Martin DF, Srivastava SK (2011) Pediatric infectious posterior uveitis. Int Ophthalmol Clin 51(1):113–28

    Article  PubMed  Google Scholar 

  • Garweg JG, Tappeiner C (2011) Differential diagnosis in infectious posterior uveitis. Klin Monbl Augenheilkd 228(4):268–72

    Article  CAS  PubMed  Google Scholar 

  • Heiligenhaus A, Wefelmeyer D, Wefelmeyer E, Rösel M, Schrenk M (2011) The eye as a common site for the early clinical manifestation of sarcoidosis. Ophthalmic Res 46(1):9–12

    Article  PubMed  Google Scholar 

  • Herbort CP, LeHoang P, Guex-Crosier Y (1998) Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 105(3):432–440

    Article  CAS  PubMed  Google Scholar 

  • Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140:509–516

    Article  PubMed  Google Scholar 

  • Jakob E et al (2009) Uveitis subtypes in a german interdisciplinary uveitis center – analysis of 1916 patients. J Rheumatol 36:127–136

    PubMed  Google Scholar 

  • Max R, Lorenz HM, Mackensen F (2010) Ocular involvement in spondyloarthropathies: HLA B27 associated uveitis. Z Rheumatol 69(5):397–402

    Article  CAS  PubMed  Google Scholar 

  • Naumann GOH Pathologie des Auges. Springer; S. 143–300

    Google Scholar 

  • Rosenbaum JT et al (2008) Uveitis secondary to bacterial products. Ophthalmic Res 40:165–168

    Article  PubMed  Google Scholar 

  • Rothova A et al (1996) Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol 80:332–336

    Article  CAS  PubMed  Google Scholar 

  • Thurau S, Wildner GG (2010) Chorioiditis. Ophthalmologe 107:79–93

    Article  CAS  PubMed  Google Scholar 

  • Wendling D (2012) Uveitis in seronegative arthritis. Curr Rheumatol Rep 14(5):402–8

    Article  PubMed  Google Scholar 

  • Zamecki KJ, Jabs DA (2010) HLA typing in uveitis: use and misuse. Am J Ophthalmol 149(2):189–193

    Article  CAS  PubMed  Google Scholar 

  • Zaidi AA, Ying GS, Daniel E, Gangaputra S, Rosenbaum JT, Suhler EB, Thorne JE, Foster CS, Jabs DA, Levy-Clarke GA, Nussenblatt RB, Kempen JH (2010) Systemic Immunosuppressive Therapy for Eye Diseases Cohort Study. Hypopyon in patients with uveitis. Ophthalmology 117(2):366–72

    Article  PubMed Central  PubMed  Google Scholar 

Literatur zu 5.4.1

  • Alander JT et al (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker KJ (1966) Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Biol Med 122(4):957–63

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi O (2010) Papadia M and Herbort CP Sensitivity of laser flare photometry compared to slit-lamp cell evaluation in monitoring anterior chamber inflammation in uveitis. Int Ophthalmol 30(5):495–500

    Article  PubMed  Google Scholar 

  • Bouchenaki N et al (2002) Assessment and classification of choroidal vasculitis in posterior uveitis using indocyanine green angiography. Klin Monbl Augenheilkd 219(4):243–9

    Article  PubMed  Google Scholar 

  • Bouchenaki N, Herbort CP (2001) The contribution of indocyanine green angiography to the appraisal and management of Vogt-Koyanagi-Harada disease. Ophthalmology 108(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • Castella AP et al (1995) Study of the blood-aqueous barrier in choroidal melanoma. Br J Ophthalmol 79(4):354–7

    Article  CAS  PubMed  Google Scholar 

  • Deutman AF, Lion F (1997) Choriocapillaris nonperfusion in acute multifocal placoid pigment epitheliopathy. Am J Ophthalmol 84(5):652–7

    Google Scholar 

  • Flower RW (1972) Infrared absorption angiography of the choroid and some observations on the effects of high intraocular pressures. Am J Ophthalmol 74(4):600–14

    CAS  PubMed  Google Scholar 

  • Guex-Crosier Y, Herbort CP (1997) Prolonged retinal arterio-venous circulation time by fluorescein but not by indocyanine green angiography in birdshot chorioretinopathy. Ocul Immunol Inflamm 5(3):203–6

    Article  CAS  PubMed  Google Scholar 

  • Guex-Crosier Y, Pittet N, Herbort CP (1994) Evaluation of laser flare-cell photometry in the appraisal and management of intraocular inflammation in uveitis. Ophthalmology 101(4):728–35

    Article  CAS  PubMed  Google Scholar 

  • Guex-Crosier Y, Pittet N, Herbort CP (1995) Sensitivity of laser flare photometry to monitor inflammation in uveitis of the posterior segment. Ophthalmology 102(4):613–21

    Article  CAS  PubMed  Google Scholar 

  • Gupta AGV, Herbort CP, Khairallah M (2009) Uveitis, Text and Imaging; Laser Flare Photometry. Jaypee, New Dehli, S 36

    Book  Google Scholar 

  • Hayreh SS (1974) Vascular pattern of the choriocapillaris. Exp Eye Res 19(1):101–4

    Article  CAS  PubMed  Google Scholar 

  • Herbort CP et al (1701) ICGA still relevant in inflammatory eye disorders? Why this question has to be dealt with separately from other eye conditions. Retina 32(3):9

    Google Scholar 

  • Herbort CP et al (1997) Use of laser flare photometry to assess and monitor inflammation in uveitis. Ophthalmology 104(1):64–71 (discussion 71–2)

    Article  CAS  PubMed  Google Scholar 

  • Herbort CP, LeHoang P, Guex-Crosier Y (1998) Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 105(3):432–40

    Article  CAS  PubMed  Google Scholar 

  • Hochheimer BF (1971) Angiography of the retina with indocyanine green. Arch Ophthalmol 86(5):564–5

    Article  CAS  PubMed  Google Scholar 

  • Hope-Ross M et al (1994) Adverse reactions due to indocyanine green. Ophthalmology 101(3):529–33

    Article  CAS  PubMed  Google Scholar 

  • Klaeger A et al (2000) Indocyanine green angiography in Behcet’s uveitis. Retina 20(3):309–14

    Article  CAS  PubMed  Google Scholar 

  • Knecht PB, Mantovani A, and Herbort CP (2013) Indocyanine green angiography-guided management of Vogt-Koyanagi-Harada disease: differentiation between choroidal scars and active lesions. Int.Ophthalmol 33(5):571–577

    Google Scholar 

  • Knecht PB, Papadia M, and Herbort CP (2013) Secondary choriocapillaritis in infectious chorioretinitis. Acta Ophthalmol 91(7):e550–e555

    Google Scholar 

  • Kogure K et al (1970) Infrared absorption angiography of the fundus circulation. Arch Ophthalmol 83(2):209–14

    Article  CAS  PubMed  Google Scholar 

  • Kuchle M et al (1998) Aqueous flare in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 236(6):426–33

    Article  CAS  PubMed  Google Scholar 

  • Kuchle M et al (1994) Tyndallometry with the laser flare cell meter and biochemical protein determination in the aqueous humor of eyes with pseudoexfoliation syndrome. Ophthalmologe 91(5):578–84

    CAS  PubMed  Google Scholar 

  • Miyake K (1977) Prevention of cystoid macular edema after lens extraction by topical indomethacin (I). A preliminary report. Albrecht Von Graefes Arch Klin Exp Ophthalmol 203(2):81–8

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NX, Schonherr U, Kuchle M (1995) Aqueous flare and retinal capillary changes in eyes with diabetic retinopathy. Ophthalmologica 209(3):145–8

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NX, Kuchle M (1993) Aqueous flare and cells in eyes with retinal vein occlusion – correlation with retinal fluorescein angiographic findings. Br J Ophthalmol 77(5):280–3

    Article  CAS  PubMed  Google Scholar 

  • Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24:82–6

    Article  CAS  PubMed  Google Scholar 

  • Obana A et al (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118(6):749–53

    CAS  PubMed  Google Scholar 

  • Owens SL (1996) Indocyanine green angiography. Br J Ophthalmol 80(3):263–6

    Article  CAS  PubMed  Google Scholar 

  • Papadia M, Herbort CP (2013) Reappraisal of birdshot retinochoroiditis (BRC): a global approach. Graefes Arch Clin Exp Ophthalmol 251(3):861–9

    Article  PubMed  Google Scholar 

  • Sawa M et al (1988) New quantitative method to determine protein concentration and cell number in aqueous in vivo. Jpn J Ophthalmol 32(2):132–42

    CAS  PubMed  Google Scholar 

  • Sawa M, Araie M, Tanishima T (1983) A fluorophotometric study of the barrier functions in the anterior segment of the eye after intracapsular cataract extraction. Jpn J Ophthalmol 27(2):404–15

    CAS  PubMed  Google Scholar 

  • Shah SM et al (1993) A comparison of the laser flare cell meter and fluorophotometry in assessment of the blood-aqueous barrier. Invest Ophthalmol Vis Sci 34(11):3124–30

    CAS  PubMed  Google Scholar 

  • Tugal-Tutkun I et al (2010) Interobserver agreement in scoring of dual fluorescein and ICG inflammatory angiographic signs for the grading of posterior segment inflammation. Ocul Immunol Inflamm 18(5):385–9

    Article  PubMed  Google Scholar 

  • Tyndall J (1869) On the Blue Colour of the Sky, the Polarization of Skylight, and on the Polarization of Light by Cloudy matter generally. Philosophical Magazine and Journal of Science 37:384–404

    Google Scholar 

  • Wakefield D et al (2010) Controversies in ocular inflammation and immunology laser flare photometry. Ocul Immunol Inflamm 18(5):334–40

    Article  PubMed  Google Scholar 

  • Yannuzzi LA (1984) A perspective on the treatment of aphakic cystoid macular edema. Surv Ophthalmol 28:540–53

    Article  PubMed  Google Scholar 

  • Yannuzzi LA (2011) Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol 151(5):745–751 (e1)

    Article  PubMed  Google Scholar 

  • Yannuzzi LA et al (1992) Digital indocyanine green videoangiography and choroidal neovascularization. Retina 12(3):191–223

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschn. 5.4.2

  • Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investigative ophthalmology 36(3):718–29

    CAS  Google Scholar 

  • Delori F, Greenberg JP, Woods RL et al (2011) Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Investigative ophthalmology & visual science 52(13):9379–90

    Article  Google Scholar 

  • Holz FG, Bellmann C, Margaritidis M, Schütt F, Otto TP, Völcker HE (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefe’s archive for clinical and experimental ophthalmology. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 237(2):145–52

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254(5035):1178–81 ((New York, N.Y.))

    Article  CAS  PubMed  Google Scholar 

  • Nassif N, Cense B, Park BH et al (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics letters 29(5):480–2

    Article  PubMed  Google Scholar 

  • Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. American journal of ophthalmology 146(4):496–500

    Article  PubMed  Google Scholar 

  • Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2008) In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. Journal of biomedical optics 13(6):064003

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolf-Schnurrbusch UEK, Wittwer VV, Ghanem R et al (2011) Blue-light versus green-light autofluorescence: lesion size of areas of geographic atrophy. Investigative ophthalmology 52(13):9497–502

    Article  Google Scholar 

Literatur zu Abschn. 5.5

  • Ang M, Cheung G, Vania M, Chen J, Yang H, Li J, Chee SP (2012) Aqueous cytokine and chemokine analysis in uveitis associated with tuberculosis. Mol Vis 18:565–73

    CAS  PubMed  Google Scholar 

  • Asano S, Yoshikawa T, Kimura H, Enomoto Y, Ohashi M, Terasaki H, Nishiyama Y (2004) Monitoring herpesvirus DNA in three cases of acute retinal necrosis by real-time PCR. J Clin Virol 29:206–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Pleyer Prof. Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herbort, C. et al. (2014). Hintergrund/Diagnostische Grundkonzepte. In: Pleyer, U. (eds) Entzündliche Augenerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38419-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38419-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38418-9

  • Online ISBN: 978-3-642-38419-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics