Skip to main content

Grundlagen der Radioonkologie

  • Chapter
  • First Online:
Uroonkologie
  • 2846 Accesses

Zusammenfassung

Als definitive Strahlentherapie in kurativer Intention hat die Radiotherapie einen hohen Stellenwert beim lokalisierten und lokal fortgeschrittenen Prostatakarzinom. Für Patienten mit lokal fortgeschrittenem Prostatakarzinom ist der Langzeitandrogenentzug zuzüglich Strahlentherapie der Prostata mit oder ohne Strahlentherapie der pelvinen Lymphknoten effektiver als der Androgenentzug allein. Bei anderen Tumorerkrankungen in der Uroonkologie, Hodentumoren, Harnblasenkarzinomen und retroperitonealen Weichteilsarkomen, hat die Strahlentherapie einen Stellenwert in kurativen Therapiekonzepten. Darüber hinaus bestehen Indikationen zur palliativen Strahlentherapie von Metastasen oder Lokalrezidiven der Malignome mit dem Ziel der Symptomkontrolle. Dieser Beitrag schildert neben Strahlentherapietechniken die Planung der konformalen perkutanen Strahlentherapie sowie die Dosis-Effekt-Abhängigkeit und beleuchtet die Bedeutung der Präzision bei der Lagerung/Positionierung bei der Durchführung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adamson J, Wu Q, Yan D (2011) Dosimetric effect of intrafraction motion and residual setup error for hypofractionated prostate intensity-modulated radiotherapy with online cone beam computed tomography image guidance. Int J Radiat Oncol Biol Phys 80: 453461

    Article  Google Scholar 

  • Arcangeli G, Saracino B, Gomellini S, Petrongari MG, Arcangeli S, Sentinelli S et al. (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78: 11–18

    Article  PubMed  Google Scholar 

  • Budäus L, Bolla M, Bossi A, Cozzarini C, Crook J, Widmark A, Wiegel T (2012) Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol 61: 112–127

    Article  PubMed  Google Scholar 

  • Cavanaugh SX, Kupelian PA, Fuller CD, Reddy C, Bradshaw P, Pollock BH, Fuss M (2004) Early prostate-specific antigen kinetics following prostate carcinoma radiotherapy: prognostic value of a time-and-PSA threshold model. Cancer 101: 96–105

    Article  PubMed  Google Scholar 

  • Crook et al. (2011)

    Google Scholar 

  • De Boer HCJ, van Sörnsen De Koste JR, Senan SSS, Visser AG, Heijmen BJ (2001) Analysis and reduction of 3D systematic and random setup errors during simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Biol Phys 49: 857–868

    Article  PubMed  CAS  Google Scholar 

  • Dearnaley D, Syndikus I, Sumo G, Bidmead M, Bloomfield D et al. (2012) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 13: 43–54

    Article  PubMed  Google Scholar 

  • Debois M, Oyen R, Maes F, Verswijvel G, Gatti G, Bosmans H, Feron M, Bellon E, Kutcher G, van Poppel H, Vanuytsel L (1999) The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys 45: 857–865

    Article  PubMed  CAS  Google Scholar 

  • Diez P, Vogelius IS, Bentzen SM (2010) A new method for synthesizing radiation dose-response data from multiple trials applied to prostate cancer. Int J Radiat Oncol Biol Phys 77: 1066–1071

    Article  PubMed Central  PubMed  Google Scholar 

  • Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S et al. (2012) Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU 109, Suppl. 1: 22–29

    Article  Google Scholar 

  • Hadley J, Yabroff KR, Barrett MJ, Penson DF, Saigal CS, Potosky AL (2010) Comparative effectiveness of prostate cancer treatments: evaluating statistical adjustments for confounding in observational data. J Natl Cancer Inst 102: 1780–1793

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoskin PJ, Motohashi K, Bownes P, Bryant L, Ostler P (2007) High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: initial results of a randomised phase three trial. Radiother Oncol 84: 114–120

    Article  PubMed  Google Scholar 

  • Kotte ANTJ, Hofman P, Lagendij, JJW, van Vulpen M, van der Heide UA (2007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69: 419–425

    Article  PubMed  Google Scholar 

  • Kupelian P, Willoughby T, Mahadevan A, Djemil T, Weinstein G, Jani S, Enke C, Solberg T, Flores N, Liu D, Beyer D, Levine L (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67: 1088–1098

    Article  PubMed  Google Scholar 

  • Lock M, Best L, Wong E, Bauman G, D’Souza D et al. (2011) A phase II trial of arc-based hypofractionated intensity-modulated radiotherapy in localized prostate cancer. Int J Radiat Oncol Biol Phys 80: 1306–1315

    Article  PubMed  Google Scholar 

  • Melancon AD, O’Daniel JC, Thang L, Kudchadker RJ, Kuban DA, Lee AK, Cheung RM, de Crevoisier R, Tuckerm SL, Newhauser W, Mohan R, Dong L (2007) Is a 3-mm intrafractional margin sufficient for daily image-guided intensity-modulated radiation therapy of prostate cancer? Radioth Oncol 85: 251–259

    Article  Google Scholar 

  • Middleton M, Frantis J, Healy B, Jones M, Murry R, Kron T, Plank A, Vatton C, Martin J (2011) Successful implementation of image-guided radiation therapy quality assurance in the Trans Tasman Radiation Oncology Group 08.01 PROFIT Study. Int J Radiat Oncol Biol Phys 81: 1576–1581

    Article  PubMed  Google Scholar 

  • Peng C, Kainz K, Lawton C, Li C (2008) A comparison of daily megavoltage CT and ultrasound image guided radiation therapy for prostate cancer. Med Phys 35: 5619–5628

    Article  PubMed  Google Scholar 

  • Poulsen PR, Muren LP, Hoyer M (2007) Residual set-up errors and margins in on-line image-guided prostate localization in radiotherapy. Radiother Oncol 85: 201–206

    Article  PubMed  Google Scholar 

  • Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Riedinger JM, Echne N, Bachaud JM, Crehange G, Fulla Y, Thullier F (2009) PSA kinetics after rqadiotherapy. Abb Biol Clin (Paris) 67: 395–404

    Google Scholar 

  • Rong Y, Tang G, Welsh JS, Mohiuddin MM, Paliwal B, Yu CX (2011) Helical tomotherapy versus single-arc intensity-modulated arc therapy: a collaborative dosimetric comparison between two institutions. Int J Radiat Oncol Biol Phys 81: 284–296

    Article  PubMed  Google Scholar 

  • Sathya JR, Davis IR, Julian JA, Guo Q, Daya D, Dayes IS, Lukka HR, Levine M (2005) Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally avanced cancer of the prostate. J Clin Oncol 23: 1192–1199

    Article  PubMed  Google Scholar 

  • Stuschke M, Sak A, Wurm R, Sinn B, Wolf G, Stüben G, Budach V (2002) Radiation-induced apoptosis in human non-small-cell lung cancer cell lines is secondary to cell-cycle progression beyond the G2-phase checkpoint. Int J Radiat Biol 78: 807–819

    Article  PubMed  CAS  Google Scholar 

  • Stuschke M, Thames HD (1999) Fractionation sensitivities and dose-control relations of head and neck carcinomas: analysis of the randomized hyperfractionation trials. Radiother Oncol 51: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Sze HC, Lee MC, Hung WM, Yau TK, Lee AW (2012) RapidArc radiotherapy planning for prostate cancer: single-arc and double-arc techniques vs. Intensity.modulated radiotherapy. Med Dosim 37: 87–91

    Article  PubMed  Google Scholar 

  • Tany JA, He T, Summers PA, Mburu RG, Kato CM et al. (2010) Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat oncol BIOL Phys 78: 1579–1585

    Article  Google Scholar 

  • Viani GA, Stefano EJ, Afonso SL (2009) Higher than-conventional radiation doses in localized prostate cancer treatment: a met-analysis of randomized controlled trials. Int J Radiat Oncol Biol Phys 74: 1405–1408

    Article  PubMed  Google Scholar 

  • Warde P, Mason M, Ding K, Kirkbride P, Brundage M et al. (2011) Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378: 2104–2111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Widmark A, Klepp A, Solberg A, Damber JE, Angelsen A et al. (2009) Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-2): an open randomized phase III trial. Lancer 373: 301–308

    Article  CAS  Google Scholar 

  • Yan D, Ziaja E, Jaffray D (1998) The use of adaptive radiation therapy to reduce setup error: a prospective clinical study. Int J Radiat Oncol Biol Phys 41: 715–720

    Article  PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Reuter VE, Fuks Z, Scardino P, Shippy A (2008) Influence of local tumor control on distant metastases and cancer related mortality after external beam radiotherapy for prostate cancer. J Urol 179: 1368–1373

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stuschke, M., Schenck, M. (2014). Grundlagen der Radioonkologie. In: Rübben, H. (eds) Uroonkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35032-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35032-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35031-3

  • Online ISBN: 978-3-642-35032-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics