Skip to main content

Moderne Bildgebung

  • Chapter
  • First Online:
Uroonkologie

Zusammenfassung

In diesem Kapitel werden die für die Uroonkologie bedeutsamen modernen Bildgebungsverfahren mit praktischen Beispielen für den klinischen Alltag vorgestellt. Sie dienen der Diagnostik, dem Tumor-Staging und werden in der Nachsorge eingesetzt.Breiten Raum nimmt der diagnostische Ultraschall bzw. die Sonographie ein. Hier haben sich neben der aktuellen Schwarz-Weiß-Bilddiagnostik computergestützte farbkodierte, dopplersonographische Techniken, 3D-Anwendungen sowie Kontrastmitteltechniken insbesondere für spezielle Fragestellungen etabliert. Radiologische Verfahren – Schnittbildgebung inkl. Computertomographie, die verschiedenen magnetresonanztomographischen Verfahren („molecular imaging“) mit und ohne Kontrastmittel – bilden einen weiteren Schwerpunkt. Nuklearmedizinische Untersuchungen ermöglichen eine nichtinvasive Visualisierung von Stoffwechselvorgängen. Darüber hinaus bieten geeignete Tracer auch die Möglichkeit zur gezielten Radionuklidtherapie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu ▶ Abschn. 10.1

  • Cosgrove D (2006) Developments in ultrasound. lmaging 18: 82–96

    Google Scholar 

  • Emamian SA, Nielsen MB, Pedersen JF, Vtte L (1993) Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. AJR Am J Roentgenol 160 (1): 83–86

    PubMed  CAS  Google Scholar 

  • Fenster A, Downey DB, Cardinal HN (2001) Three-dimensional ultrasound imaging. Phys Med Biol 46 (5): 67–99

    Google Scholar 

  • Giannarini G, Petralia G, Thoeny HC (2012) Potential and limitations of diffusion-weighted magnetic resonance imaging in kidney, prostate, and bladder cancer including pelvic lymph node staging: a critical analysis of the literature. Eur Urol. Feb;61(2):326–340

    PubMed  Google Scholar 

  • Grabski B, Baeurle L, Loch A, Wefer B, Paul U, Loch T (2011) Computerized transrectal ultrasound of the prostate in a multicenter setup (C-TRUS-MS): Detection of cancer after multiple negative systematic random and in primary biopsies. World J Urol. 29 (5):573–579

    PubMed  Google Scholar 

  • Gu Fl (1990) lmaging techniques for the diagnosis of renal tumors. Proc Chin Acad Med Sci Peking Union Med Coll 5 (2): 75–78

    PubMed  CAS  Google Scholar 

  • Gunther P, Schenk J P, Wunsch R, Holland-Cunz S, Kessler U, Troger J, Waag KL (2006) Acute testicular torsion in children: the role of sonography in the diagnostic workup. Eur Radiol 16: 2527–2532

    PubMed  CAS  Google Scholar 

  • Heynemann H, Jenderka KV et al. (2004) Neue Techniken der Urosonographie. Urologe A 43:1362–1370

    PubMed  CAS  Google Scholar 

  • Heynemann H, Tuma J (2006) Die Sonographie der Niere aus urologisch-nephrologischer Sicht. Praxis 95:729–35

    PubMed  CAS  Google Scholar 

  • Hili CR, Bamber Je, ter Haar GR (2004) Physical principles of medical ultrasonics, 2nd ed. John Wiley & Sons

    Google Scholar 

  • Kessler TM, Gerber R, Burkhard FC, Studer UE, Danuser H (2006) Ultrasound assessment of detrusor thickness in men – can it predict bladder outlet obstruction and replace pressure flow study? J Urol 175: 2170–2173

    PubMed  Google Scholar 

  • Konstantinos S, Alevizos A, Anargiros M, Constantinos M, Athanase H, Konstantinos B, Michail E, Fragiskos S (2006) Association between testicular microlithiasis, testicular cancer, cryptorchidism and history of ascending testis. Int Braz J Urol 32: 434–438

    PubMed  Google Scholar 

  • Kremkau FW (2006) Diagnostic ultrasound: principles and instruments, 7th ed. Elsevier/Saunders, Philadelphia

    Google Scholar 

  • Lee DI, Bagley DH, Liu J (2001) Experience with endoluminal ultrasonography in the urinary tract. J Endourol 15: 67–74

    PubMed  CAS  Google Scholar 

  • Loch AC, Bannowsky A, Baeurle L, Grabski B, König B, Flier G, Schmitz-Krause O, Paul U, Loch T (2007) Technical and anatomical essentials for transrectal ultrasound of the prostate. World J Urol 25(4): 361–6

    PubMed  Google Scholar 

  • Loch T (2007) Computerized transrectal ultrasound (C-TRUS) of the prostate: detection of cancer in patients with multiple negative systematic random biopsies. World J Urol 25(4): 375–80

    PubMed  Google Scholar 

  • Loch T, Schneider G (2006) Innovative imaging in urology: fascination and future: Yesterday, today, and tomorrow. Urologe A 45 4:59–73

    PubMed  Google Scholar 

  • Mandavia DP, Aragona J, Chan L, Chan D, Henderson SO (2007) Ultrasound training for emergency physicians – a prospective study. Acad Emerg Med 7:1008–14

    Google Scholar 

  • Meckler U, Wermke W (1997) Niere. In: Meckler U, Wermke W (Hrsg) Sonographische Differentialdiagnostik. Systemischer Atlas. Deutscher Ärzte-Verlag, Köln, S 264–69

    Google Scholar 

  • Millner R et al. (1987) Ultraschalltechnik – Grundlagen und Anwendung. Physik-Verlag, Weinheim

    Google Scholar 

  • Morey AF, McAninch JW (2000) Sonographic staging of anterior urethral strictures. J Urol 63: 1070–1075

    Google Scholar 

  • O’Neill WC (2000) Hydronephrosis.ln: O’Neill WC (ed) Atlas of renal ultrasonography. Saunders, Philadelphia, pp 109–18

    Google Scholar 

  • Salomon G, Köllerman J, Thederan I, Chun FK, Budäus L, Schlomm T, Isbarn H, Heinzer H, Huland H, Graefen M (2008) Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 54(6):1354–62

    PubMed  Google Scholar 

  • Sakamoto H, Shichizyou T, Saito K, Okumura T, Ogawa Y, Yoshida H, Kushima M (2006) Testicular microlithiasis identified ultrasonographically in Japanese adult patients: prevalence and associated conditions. Urology 68: 636–641

    PubMed  Google Scholar 

  • Siemer S, Uder M, Humke U et al. (2000) Stellenwert der Sonographie in der Frühdiagnostik des Nierenzellkarzinoms. Urologe A 39: 149–153

    PubMed  CAS  Google Scholar 

  • Strunk T, Decker G, Willinek W, Mueller SC, Rogenhofer S (2012) Combination of C-TRUS with multiparametric MRI: potential for improving detection of prostate cancer. World J Urol [Epub ahead of print 2012 Aug 12]

    Google Scholar 

  • Szabo TL (2004) Diagnostic ultrasound imaging – inside out. Elsevier, Boston

    Google Scholar 

  • Tuma J, Dietrich C (2006) Niere. In: Dietrich C (Hrsg) Ultraschall-Kurs. Deutscher Ärzte-Verlag, Köln, S 219–248

    Google Scholar 

  • Tuma J, Schwarzenbach HR (2004) Die Sonographie bei Nierenkolik. Schweiz Rundsch Med Prax 93 (43): 1767–1774

    CAS  Google Scholar 

  • Tunn R, Schaer G, Peschers U, Bader W, Gauruder A, Hanzal E, Koelbl H, Koelle D, Perucchini D, Petri E, Riss P, Schuessler B, Viereck V (2005) Updated recommendations on ultrasonography in urogynecology. Int Urogynecol J Pelvic Floor Dysfunct 16: 236–41

    PubMed  CAS  Google Scholar 

  • Wink M, Frauscher F, Cosgrove D, Chapelon JY, Palwein L, Mitterberger M, Harvey C, Rouvière O, de la Rosette J, Wijkstra H (2008) Contrast-enhanced ultrasound and prostate cancer; a multicentre European research coordination project. Eur Urol 54 (5): 982–992

    PubMed  Google Scholar 

Literatur zu ▶ Abschn. 10.2

  • Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J et al. (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. Jama 290: 3199–3206

    PubMed  CAS  Google Scholar 

  • Bellin MF, Roy C (2007) Magnetic resonance lymphography. Curr Opin Urol 17: 65–69

    PubMed  Google Scholar 

  • Beyersdorff D, Zhang J, Schoder H, Bochner B, Hricak H (2008) Bladder cancer: can imaging change patient management? Curr Opin Urol 18: 98–104

    PubMed  Google Scholar 

  • Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, Kratzik C et al. (2007) Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging – initial results. Radiology 245: 176–185

    PubMed  Google Scholar 

  • Cabrera AR, Coakley FV, Westphalen AC, Lu Y, Zhao S, Shinohara K et al. (2008) Prostate cancer: is inapparent tumor at endorectal MR and MR spectroscopic imaging a favorable prognostic finding in patients who select active surveillance? Radiology 247: 444–450

    PubMed Central  PubMed  Google Scholar 

  • Catalano C, Fraioli F, Laghi A, Napoli A, Pediconi F, Danti M et al. (2003) High-resolution multidetector CT in the preoperative evaluation of patients with renal cell carcinoma. AJR Am J Roentgenol 180: 1271–1277

    PubMed  CAS  Google Scholar 

  • Deserno WM, Harisinghani MG, Taupitz M, Jager GJ, Witjes JA, Mulders PF et al. (2004) Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 233: 449–456

    PubMed  Google Scholar 

  • Dobson MJ, Carrington BM, Collins CD, Ryder WD, Read G, Hutchinson CE et al. (2001) The assessment of irradiated bladder carcinoma using dynamic contrast-enhanced MR imaging. Clin Radiol 56: 94–98

    PubMed  CAS  Google Scholar 

  • Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, van Leenders GJ, Hulsbergen-Van De Kaa CA et al. (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229: 248–254

    PubMed  Google Scholar 

  • Farrelly C, Delaney H, McDermott R, Malone D (2008) Do all non-calcified echogenic renal lesions found on ultrasound need further evaluation with CT? Abdom Imaging 33: 44–47

    PubMed  Google Scholar 

  • Flaherty KT, Rosen MA, Heitjan DF, Gallagher ML, Schwartz B, Schnall MD et al. (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7: 496–501

    PubMed  CAS  Google Scholar 

  • Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P et al. (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241: 449–458

    PubMed  Google Scholar 

  • Giles SL, Morgan VA, Riches SF, Thomas K, Parker C, deSouza NM (2011) Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am J Roentgenol 196: 586–591

    PubMed  Google Scholar 

  • Girouin N, Mege-Lechevallier F, Tonina Senes A, Bissery A, Rabilloud M, Marechal JM et al. (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17: 1498–1509

    PubMed  Google Scholar 

  • Graser A, Heuck A, Sommer B, Massmann J, Scheidler J, Reiser M et al. (2007) Per-sextant localization and staging of prostate cancer: correlation of imaging findings with whole-mount step section histopathology. AJR Am J Roentgenol 188: 84–90

    PubMed  Google Scholar 

  • Haider MA, Chung P, Sweet J, Toi A, Jhaveri K, Menard C et al. (2008) Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys 70: 425–430

    PubMed  Google Scholar 

  • Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G et al. (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189: 323–328

    PubMed  Google Scholar 

  • Hallscheidt P, Noeldge G, Schawo S, Bartling S, Kauffmann G, Pfitzenmaier J et al. (2007) Fortschritte im Staging des Nierenzellkarzinoms mittels hochauflösender Bildgebung. Rofo 179: 1236–1242

    PubMed  CAS  Google Scholar 

  • Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V (2005) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 62: 140–147

    PubMed  Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499

    PubMed  Google Scholar 

  • Heijmink SW, Futterer JJ, Hambrock T, Takahashi S, Scheenen TW, Huisman HJ et al. (2007) Prostate cancer: body-array versus endorectal coil MR imaging at 3 T – comparison of image quality, localization, and staging performance. Radiology 244: 184–195

    PubMed  Google Scholar 

  • Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL et al. (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63: 387–395

    PubMed  CAS  Google Scholar 

  • Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243: 28–53

    PubMed  Google Scholar 

  • Hricak H, Wang L, Wei DC, Coakley FV, Akin O, Reuter VE et al. (2004) The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 100: 2655–2663

    PubMed  Google Scholar 

  • Katahira K, Takahara T, Kwee TC, Oda S, Suzuki Y, Morishita S et al. (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21: 188–196

    PubMed  Google Scholar 

  • Ketelsen D, Rothke M, Aschoff P, Merseburger AS, Lichy MP, Reimold M et al. (2008) Nachweis ossärer Metastasen des Prostatakarzinoms - Vergleich der Leistungsfähigkeit der Ganzkörper-MRT und der Skelettszintigrafie. Rofo 180: 746–752

    PubMed  CAS  Google Scholar 

  • Kim CK, Park BK (2008) Update of prostate magnetic resonance imaging at 3 T. J Comput Assist Tomogr 32: 163–172

    PubMed  Google Scholar 

  • Lattouf JB, Grubb RL, 3rd, Lee SJ, Bjurlin MA, Albert P, Singh AK et al. (2007) Magnetic resonance imaging-directed transrectal ultrasonography-guided biopsies in patients at risk of prostate cancer. BJU Int 99: 1041–1046

    PubMed  Google Scholar 

  • Lee JY, Kim CK, Choi D, Park BK (2008) Volume doubling time and growth rate of renal cell carcinoma determined by helical CT: a single-institution experience. Eur Radiol 18: 731–737

    PubMed  Google Scholar 

  • Lim HK, Kim JK, Kim KA, Cho KS (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection – a multireader study. Radiology 250: 145–151

    PubMed  Google Scholar 

  • Luboldt W, Kufer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD et al. (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249: 1017–1025

    PubMed  Google Scholar 

  • Mazaheri Y, Shukla-Dave A, Hricak H, Fine SW, Zhang J, Inurrigarro G et al. (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging – correlation with pathologic findings. Radiology 246: 480–488

    PubMed  Google Scholar 

  • Morcos SK, Thomsen HS (2008) Nephrogenic systemic fibrosis: more questions and some answers. Nephron Clin Pract 110: c24–31; discussion c32

    Google Scholar 

  • Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS et al. (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol 189: W192

    Google Scholar 

  • Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T et al. (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment – utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248: 643–654

    PubMed  Google Scholar 

  • Oyen RH, Van Poppel HP, Ameye FE, Van de Voorde WA, Baert AL, Baert LV (1994) Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. Radiology 190: 315–322

    PubMed  CAS  Google Scholar 

  • Pondman KM, Futterer JJ, Ten Haken B, Schultze Kool LJ, Witjes JA, Hambrock T et al. (2008) MR-Guided Biopsy of the Prostate: An Overview of Techniques and a Systematic Review. Eur Urol 54: 517–527

    PubMed  Google Scholar 

  • Puech P, Potiron E, Lemaitre L, Leroy X, Haber GP, Crouzet S et al. (2009) Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 74: 1094–1099

    PubMed  Google Scholar 

  • Roethke MC, Lichy MP, Kniess M, Werner MK, Claussen CD, Stenzl A et al. (2012) Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J Urol

    Google Scholar 

  • S3-Leitlinie P (2009) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. unter http://www.leitlinien.net

  • Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR et al. (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging – clinicopathologic study. Radiology 213: 473–480

    PubMed  CAS  Google Scholar 

  • Schmoll HJ, Souchon R, Krege S, Albers P, Beyer J, Kollmannsberger C et al. (2004) European consensus on diagnosis and treatment of germ cell cancer: a report of the European Germ Cell Cancer Consensus Group (EGCCCG). Ann Oncol 15: 1377–1399

    PubMed  CAS  Google Scholar 

  • Sciarra A, Panebianco V, Salciccia S, Osimani M, Lisi D, Ciccariello M et al. (2007) Role of Dynamic Contrast-Enhanced Magnetic Resonance (MR) Imaging and Proton MR Spectroscopic Imaging in the Detection of Local Recurrence after Radical Prostatectomy for Prostate Cancer. Eur Urol

    Google Scholar 

  • Shellock FG, Spinazzi A (2008) MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. AJR Am J Roentgenol 191: 1129–1139

    PubMed  Google Scholar 

  • Sheth S, Scatarige JC, Horton KM, Corl FM, Fishman EK (2001) Current concepts in the diagnosis and management of renal cell carcinoma: role of multidetector ct and three-dimensional CT. Radiographics 21 Spec No: S237–254

    Google Scholar 

  • Shuch B, La Rochelle JC, Pantuck AJ, Belldegrun AS (2008) The staging of renal cell carcinoma. Curr Opin Urol 18: 455–461

    PubMed  Google Scholar 

  • Shukla-Dave A, Hricak H, Kattan MW, Pucar D, Kuroiwa K, Chen HN et al. (2007) The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int 99: 786–793

    PubMed  CAS  Google Scholar 

  • Sohaib SA, Cook G, Allen SD, Hughes M, Eisen T, Gore M (2009) Comparison of whole-body MRI and bone scintigraphy in the detection of bone metastases in renal cancer. Br J Radiol 82: 632–639

    PubMed  CAS  Google Scholar 

  • Stattaus J, Hahn S, Gauler T, Eberhardt W, Mueller SP, Forsting M et al. (2008) Osteoblastic response as a healing reaction to chemotherapy mimicking progressive disease in patients with small cell lung cancer. Eur Radiol

    Google Scholar 

  • Tekes A, Kamel I, Imam K, Szarf G, Schoenberg M, Nasir K et al. (2005) Dynamic MRI of bladder cancer: evaluation of staging accuracy. AJR Am J Roentgenol 184: 121–127

    PubMed  Google Scholar 

  • Testa C, Schiavina R, Lodi R, Salizzoni E, Corti B, Farsad M et al. (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 244: 797–806

    PubMed  Google Scholar 

  • Thomsen HS, Morcos SK (2006) Contrast-medium-induced nephropathy: is there a new consensus? A review of published guidelines. Eur Radiol 16: 1835–1840

    PubMed  Google Scholar 

  • Wang Y, Alkasab TK, Narin O, Nazarian RM, Kaewlai R, Kay J et al. (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260: 105–111

    PubMed  Google Scholar 

  • Weinreb JC, Blume JD, Coakley FV, Wheeler TM, Cormack JB, Sotto CK et al. (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy – results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251: 122–133

    PubMed Central  PubMed  Google Scholar 

  • White PM, Adamson DJ, Howard GC, Wright AR (1999) Imaging of the thorax in the management of germ cell testicular tumours. Clin Radiol 54: 207–211

    PubMed  CAS  Google Scholar 

  • Xylinas E, Yates DR, Renard-Penna R, Seringe E, Bousquet JC, Comperat E et al. (2011) Role of pelvic phased array magnetic resonance imaging in staging of prostate cancer specifically in patients diagnosed with clinically locally advanced tumours by digital rectal examination. World J Urol

    Google Scholar 

  • Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S et al. (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234: 804–814

    PubMed  Google Scholar 

  • Zhang J, Lefkowitz RA, Ishill NM, Wang L, Moskowitz CS, Russo P et al. (2007) Solid renal cortical tumors: differentiation with CT. Radiology 244: 494–504

    PubMed  Google Scholar 

Literatur zu ▶ Abschn. 10.3

  • Albrecht S, Buchegger F, Soloviev D et al. (2007) (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34: 185–196

    PubMed  Google Scholar 

  • Baczyk M, Czepczyński R, Milecki P, Pisarek M, Oleksa R, Sowiński J (2007) 89Sr versus 153Sm-EDTMP: comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nucl Med Commun 28: 245–50

    PubMed  Google Scholar 

  • Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, Broinger G, Stoiber F, Fogelman I, Langsteger W (2008) Detection of bone metastases in patients with prostate cancer by F-18 fluorocholine and F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging [Epub 5.05.2008]

    Google Scholar 

  • Beyer T, Freudenberg LS, Townsend DW, Czernin J (2011a). The future of hybrid imaging. Part 1: Hybrid imaging technologies and SPECT/CT. Insights into Imaging 2: 161–169

    Google Scholar 

  • Beyer T, Freudenberg LS, Czernin J, Townsend DW (2011b) The future of hybrid imaging. Part 3: PET/MR, small animal imaging and beyond. Insights into Imaging 235–246

    Google Scholar 

  • Bouchelouche K, Oehr P (2008) Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review.J Urol 179: 34–45

    PubMed  CAS  Google Scholar 

  • Brenot-Rossi I, Rossi D, Esterni B, Brunelle S, Chuto G, Bastide C (2008) Radioguided sentinel lymph node dissection in patients with localised prostate carcinoma: influence of the dose of radiolabelled colloid to avoid failure of the procedure. Eur J Nucl Med Mol Imaging 35(1): 32–8

    PubMed  Google Scholar 

  • Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G (2012) Oncologic PET/MRI, Part 1: Tumors of the Brain, Head and Neck, Chest, Abdomen, and Pelvis. J Nucl Med 2012 May 11 [Epub ahead of print]

    Google Scholar 

  • Burton JB, Johnson M, Sato M, Koh SB, Mulholland DJ, Stout D, Chatziioannou AF, Phelps ME, Wu H, Wu L (2008) Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat Med [Epub 11.07.2008]

    Google Scholar 

  • Colabufo NA, Abate C, Contino M, Inglese C, Niso M, Berardi F, Perrone R (2007) PB183, a sigma receptor ligand, as a potential PET probe for the imaging of prostate adenocarcinoma. Bioorg Med Chem Lett 15: 1990–3

    Google Scholar 

  • Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gönen M, Ruan S, Pierre C, Nagel A, Pryma DA, Humm J, Larson SM, Old LJ, Russo P (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8: 304–10

    PubMed  CAS  Google Scholar 

  • Dolezal J, Vizda J, Odrazka K (2007) Prospective evaluation of samarium-153-EDTMP radionuclide treatment for bone metastases in patients with hormone-refractory prostate cancer. Urol Int 78: 50–7

    PubMed  CAS  Google Scholar 

  • Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Volkert WA, Jurisson SS, Hoffman TJ (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48: 1327–37

    PubMed  CAS  Google Scholar 

  • Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, Freschi M, Fazio F, Messa C (2008) [(11)C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imag 35: 1065–73

    CAS  Google Scholar 

  • Hadway P, Smith Y, Corbishley C, Heenan S, Watkin NA (2007) Evaluation of dynamic lymphoscintigraphy and sentinel lymph-node biopsy for detecting occult metastases in patients with penile squamous cell carcinoma. BJU Int 100: 561–5

    PubMed  Google Scholar 

  • Heyns CF, Theron PD (2008) Evaluation of dynamic sentinel lymph node biopsy in patients with squamous cell carcinoma of the penis and palpable inguinal nodes. BJU Int [Epub 10.04.2008]

    Google Scholar 

  • Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, Cservenyàk T, Hany TF (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35: 253–63

    PubMed  Google Scholar 

  • Igerc I, Kohlfürst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I, Lind P (2008) The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging 35: 976–83

    PubMed  CAS  Google Scholar 

  • Jambor I, Borra R, Kemppainen J, Lepomäki V, Parkkola R, Dean K, Alanen K, Arponen E, Nurmi M, Aronen HJ, Minn H (2012) Improved detection of localized prostate cancer using co-registered MRI and (11)C-acetate PET/CT. Eur J Radiol 2012 Feb 17 [Epub ahead of print]

    Google Scholar 

  • Jeschke S, Beri A, Grüll M, Ziegerhofer J, Prammer P, Leeb K, Sega W, Janetschek G (2008) Laparoscopic radioisotope-guided sentinel lymph node dissection in staging of prostate cancer. Eur Urol 53: 126–32

    PubMed  Google Scholar 

  • Krengli M, Ballarè A, Cannillo B, Rudoni M, Kocjancic E, Loi G, Brambilla M, Inglese E, Frea B (2006) Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer. Int J Radiat Oncol Biol Phys 15: 66: 1100–4

    Google Scholar 

  • Larson SM, Schöder H (2008) Advances in positron emission tomography applications for urologic cancers. Curr Opin Urol 18: 65–70

    PubMed  Google Scholar 

  • Leijte JA, Olmos RA, Nieweg OE, Horenblas S (2008) Anatomical mapping of lymphatic drainage in penile carcinoma with SPECT-CT: implications for the extent of inguinal lymph node dissection. Eur Urol [Epub 19.05.2008]

    Google Scholar 

  • Liedberg F, Chebil G, Davidsson T, Gudjonsson S, Månsson W (2006) ntraoperative sentinel node detection improves nodal staging in invasive bladder cancer. J Urol 175: 84–8

    PubMed  Google Scholar 

  • Lord M, Ratib O, Vallée JP (2011) 18F-Fluorocholine integrated PET/MRI for the initial staging of prostate cancer. Eur J Nucl Med Mol Imag 38 (12): 2288

    Google Scholar 

  • Meinhardt W, Valdés Olmos RA, van der Poel HG, Bex A, Horenblas S (2008) Laparoscopic sentinel node dissection for prostate carcinoma: technical and anatomical observations. BJU Int [Epub 10.04.2008]

    Google Scholar 

  • Mitsuoka K, Miyoshi S, Kato Y, Murakami Y, Utsumi R, Kubo Y, Noda A, Nakamura Y, Nishimura S, Tsuji A (2008) Cancer detection using a PET tracer, 11C-glycylsarcosine, targeted to H+/peptide transporter. J Nucl Med 49: 615–22

    PubMed  CAS  Google Scholar 

  • Nilsson S, Franzén L, Parker C, Tyrrell C, Blom R, Tennvall J, Lennernäs B, Petersson U, Johannessen DC, Sokal M, Pigott K, Yachnin J, Garkavij M, Strang P, Harmenberg J, Bolstad B, Bruland OS (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol 8(7): 587–94

    PubMed  CAS  Google Scholar 

  • Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD, Chenevert T, Piert M (2012) Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 53 (4): 546–51

    PubMed  CAS  Google Scholar 

  • Pelosi E, Arena V, Skanjeti A et al. (2008) Role whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 113: 895–904

    PubMed  CAS  Google Scholar 

  • Ricci S, Boni G, Pastina I, Genovesi D, Cianci C, Chiacchio S, Orlandini C, Grosso M, Alsharif A, Chioni A, Di Donato S, Francesca F, Selli C, Rubello D, Mariani G (2007) Clinical benefit of bone-targeted radiometabolic therapy with combined with chemotherapy in patients with metastatic hormone-refractory prostate cancer. Eur J Nucl Med Mol Imaging 34: 1023–30

    PubMed  CAS  Google Scholar 

  • Rioja J, Rodríguez-Fraile M, Lima-Favaretto R, Rincón-Mayans A, Peñuelas-Sánchez I, Zudaire-Bergera JJ, Parra RO (2010) Role of positron emission tomography in urological oncology. BJU Int 106 (11): 1578–1593

    PubMed  Google Scholar 

  • Rinnab L, Blumstein N, Mottaghy F et al. (2007) 11C-choline positron-emission tomography/computed tomography and transrectal ultrasonography for staging localized prostate cancer. BJU Int 99: 1421–6

    PubMed  CAS  Google Scholar 

  • Scattoni V, Picchio M, Suardi N et al. (2007) Detection of lymph-node metastases with integrated [(11)C] choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 52: 423–429

    PubMed  Google Scholar 

  • Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, Franceschelli A, Sanguedolce F, Bertaccini A, Farsad M, Giovacchini G, Fanti S, Grigioni WF, Fazio F, Montorsi F, Rigatti P, Martorana G (2008) (11)C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54: 392–401

    PubMed  Google Scholar 

  • Schilling D, Schlemmer HP, Wagner PH, Böttcher P, Merseburger AS, Aschoff P, Bares R, Pfannenberg C, Ganswindt U, Corvin S, Stenzl A (2008) Histological verification of (11)C-choline-positron emission/computed tomography-positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. BJU Int [Epub am 10.04.2008]

    Google Scholar 

  • Sherif A, Garske U, de la Torre M, Thörn M (2006) Hybrid SPECT-CT: an additional technique for sentinel node detection of patients with invasive bladder cancer. Eur Urol 50: 83–91

    PubMed  Google Scholar 

  • Takahashi N, Inoue T, Lee J, Yamaguchi T, Shizukuishi K (2007) The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology 72: 226–33

    PubMed  Google Scholar 

  • Townsend DW (2008) Dual-modality imaging: combining anatomy and function.J Nucl Med 49: 938–55

    PubMed  Google Scholar 

  • Vāvere AL, Kridel SJ, Wheeler FB, Lewis JS (2008) 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49: 327–34

    PubMed  Google Scholar 

  • Warncke SH, Mattei A, Fuechsel FG, Z’Brun S, Krause T, Studer UE (2007) Detection rate and operating time required for gamma probe-guided sentinel lymph node resection after injection of technetium-99m nanocolloid into the prostate with and without preoperative imaging. Eur Urol 52: 126–32

    PubMed  Google Scholar 

  • Weckermann D, Holl G, Dorn R, Wagner T, Harzmann R (2007a) Reliability of preoperative diagnostics and location of lymph node metastases in presumed unilateral prostate cancer. BJU Int 99: 1036–40

    Google Scholar 

  • Weckermann D, Dorn R, Holl G, Wagner T, Harzmann R (2007b) Limitations of radioguided surgery in high-risk prostate cancer. Eur Urol 51: 1549–56

    Google Scholar 

  • Weckermann D, Dorn R, Trefz M, Wagner T, Wawroschek F, Harzmann R (2007c) Sentinel lymph node dissection for prostate cancer: experience with more than 1,000 patients. J Urol 177: 916–20

    Google Scholar 

  • Willhauck MJ, Sharif Samani BR, Gildehaus FJ, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Göke B, Morris JC, Spitzweg C (2007) Application of 188rhenium as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 92: 4451–8

    PubMed  CAS  Google Scholar 

  • Willhauck MJ, Samani BR, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Meyer GJ, Knapp WH, Göke B, Morris JC, Spitzweg C (2008) The potential of (211) Astatine for NIS-mediated radionuclide therapy in prostate cancer. Eur J Nucl Med Mol Imaging 35: 1272–81

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bockisch, A., Forsting, M., Freudenberg, L., Loch, T., Rübben, H., Stattaus, J. (2014). Moderne Bildgebung. In: Rübben, H. (eds) Uroonkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35032-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35032-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35031-3

  • Online ISBN: 978-3-642-35032-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics