Skip to main content

Polarity and Asymmetry During Mouse Oogenesis and Oocyte Maturation

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Cell polarity and asymmetry play a fundamental role in embryo development. The unequal segregation of determinants, cues, and activities is the major event in the differentiation of cell fate and function in all multicellular organisms. In oocytes, polarity and asymmetry in the distribution of different molecules are prerequisites for the progression and proper outcome of embryonic development. The mouse oocyte, like the oocytes of other mammals, seems to apply a less stringent strategy of polarization than other vertebrates. The mouse embryo undergoes a regulative type of development, which permits the full rectification of development even if the embryo loses up to half of its cells or its size is experimentally doubled during the early stages of embryogenesis. Such pliability is strongly related to the proper oocyte polarization before fertilization. Thus, the molecular mechanisms leading to the development and maintenance of oocyte polarity must be included in any fundamental understanding of the principles of embryo development. In this chapter, we provide an overview of current knowledge regarding the development and maintenance of polarity and asymmetry in the distribution of organelles and molecules in the mouse oocyte. Curiously, the mouse oocyte becomes polarized at least twice during ontogenesis; the question of how this phenomenon is achieved and what role it might play is addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertini DF (2011) NOBOX does right for the follicle reserve: insights into premature ovarian failure. J Assist Reprod Genet 28:567–568

    PubMed  Google Scholar 

  • Albertini DF, Barrett SL (2004) The developmental origins of mammalian oocyte polarity. Semin Cell Dev Biol 15:599–606

    PubMed  Google Scholar 

  • Anifandis G, Dafopoulos K, Messini CI, Chalvatzas N, Messinis IE (2010) Effect of the position of the polar body during ICSI on fertilization rate and embryo development. Reprod Sci 17:849–853

    PubMed  CAS  Google Scholar 

  • Araki K, Naito K, Haraguchi S, Suzuki R, Yokoyama M, Inoue M, Aizawa S, Toyoda Y, Sato E (1996) Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase. Biol Reprod 55:1315–1324

    PubMed  CAS  Google Scholar 

  • Arion D, Meijer L (1989) M-phase-specific protein kinase from mitotic sea urchin eggs: cyclic activation depends on protein synthesis and phosphorylation but does not require DNA or RNA synthesis. Exp Cell Res 183:361–375

    PubMed  CAS  Google Scholar 

  • Azoury J, Lee KW, Georget V, Rassinier P, Leader B, Verlhac MH (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18:1514–1519

    PubMed  CAS  Google Scholar 

  • Azoury J, Verlhac MH, Dumont J (2009) Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol Cell 101:69–76

    PubMed  CAS  Google Scholar 

  • Azoury J, Lee KW, Georget V, Hikal P, Verlhac MH (2011) Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development 138:2903–2908

    PubMed  CAS  Google Scholar 

  • Bailly E, Dorée M, Nurse P, Bornens M (1989) p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. EMBO J 8:3985–3995

    PubMed  CAS  Google Scholar 

  • Balakier H, Czolowska R (1977) Cytoplasmic control of nuclear maturation in mouse oocytes. Exp Cell Res 110:466–469

    PubMed  CAS  Google Scholar 

  • Barrett SL, Albertini DF (2007) Allocation of gamma-tubulin between oocyte cortex and meiotic spindle influences asymmetric cytokinesis in the mouse oocyte. Biol Reprod 6:949–957

    Google Scholar 

  • Barrett SL, Albertini DF (2010) Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet 27:29–39

    PubMed  Google Scholar 

  • Bashour AM, Fullerton AT, Hart MJ, Bloom GS (1997) IQGAP1, a Rca- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 137:1555–1566

    PubMed  CAS  Google Scholar 

  • Bergstrom CT, Pritchard J (1998) Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. Genetics 149:2135–2146

    PubMed  CAS  Google Scholar 

  • Bielak-Zmijewska A, Kolano A, Szczepanska K, Maleszewski M, Borsuk E (2008) Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos. Dev Biol 322:21–32

    PubMed  CAS  Google Scholar 

  • Bouchet C, Steffann J, Corcos J, Monnot S, Paquis V, Rotig A, Lebon S, Levy P, Royer G, Giurgea I, Gigarel N, Benachi A, Dumez Y, Munnich A, Bonnefont JP (2006) Prenatal diagnosis of myopathy, encephalopathy, lactic acidosis, and stroke-like syndrome: contribution to understanding mitochondrial DNA segregation during human embryofetal development. J Med Genet 43:788–792

    PubMed  CAS  Google Scholar 

  • Brunet S, Maro B (2007) Germinal vesicle position and meiotic maturation in mouse oocyte. Reproduction 133:1069–1072

    PubMed  CAS  Google Scholar 

  • Brunet S, Verlhac MH (2011) Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 17:68–75

    PubMed  Google Scholar 

  • Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39:386–390

    PubMed  CAS  Google Scholar 

  • Cao L, Shitara H, Sugimoto M, Hayashi J, Abe K, Yonekawa H (2009) New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLoS Genet 5:e1000756

    PubMed  Google Scholar 

  • Capco DG, Gallicano GI, McGaughey RW, Downing KH, Larabell CA (1993) Cytoskeletal sheets of mammalian eggs and embryos: a lattice-like network of intermediate filaments. Cell Motil Cytoskeleton 24:85–99

    PubMed  CAS  Google Scholar 

  • Cau J, Hall A (2005) Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 118:2579–2587

    PubMed  CAS  Google Scholar 

  • Chesnel F, Bazile F, Pascal A, Kubiak JZ (2006) Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos. Cell Cycle 5:1687–1698

    PubMed  CAS  Google Scholar 

  • Ciemerych MA, Tarkowski AK, Kubiak JZ (1998) Autonomous activation of histone H1 kinase, cortical activity and microtubule organization in one- and two-cell mouse embryos. Biol Cell 90:557–564

    PubMed  CAS  Google Scholar 

  • Colledge WH, Carlton MB, Udy GB, Evans MJ (1994) Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370:65–68

    PubMed  CAS  Google Scholar 

  • Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590

    PubMed  CAS  Google Scholar 

  • Cox RT, Spradling AC (2006) Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 133:3371–3377

    PubMed  CAS  Google Scholar 

  • Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HH, Chinnery PF (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40:249–254

    PubMed  CAS  Google Scholar 

  • Cui XS, Li XY, Kim NH (2007) Cdc42 is implicated in polarity during meiotic resumption and blastocyst formation in the mouse. Mol Reprod Dev 74:785–794

    PubMed  CAS  Google Scholar 

  • de Pennart H, Verlhac MH, Cibert C, Santa Maria A, Maro B (1993) Okadaic acid induces spindle lengthening and disrupts the interaction of microtubules with the kinetochores in metaphase II-arrested mouse oocytes. Dev Biol 157:170–181

    PubMed  Google Scholar 

  • De Smedt V, Szollosi D, Kloc M (2000) The Balbiani body: asymmetry in the mammalian oocyte. Genesis 26:208–212

    PubMed  Google Scholar 

  • Dean NL, Battersby BJ, Ao A, Gosden RG, Tan SL, Shoubridge EA, Molnar MJ (2003) Prospect of preimplantation genetic diagnosis for heritable mitochondrial DNA diseases. Mol Hum Reprod 9:631–638

    PubMed  CAS  Google Scholar 

  • Deng M, Kishikawa H, Yanagimachi R, Kopf GS, Schultz RM et al (2003) Chromatin-mediated cortical granule redistribution is responsible for the formation of the cortical granule-free domain in mouse eggs. Dev Biol 257:166–176

    PubMed  CAS  Google Scholar 

  • Deng M, Williams CJ, Schultz RM (2005) Role of MAP kinase and myosin light chain kinase in chromosome-induced development of mouse egg polarity. Dev Biol 278:358–366

    PubMed  CAS  Google Scholar 

  • Ducka AM, Joel P, Popwicz GM, Trybus KM, Schleicher M, Noegel AA, Huber R, Holak TA, Sitar T (2010) Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation. Proc Natl Acad Sci USA 107:11757–11762

    PubMed  CAS  Google Scholar 

  • Dumont J, Million K, Sunderland K, Rassinier P, Hyunjung L, Leader B, Verlhac M-H (2007) Formin-2 is required for spindle migration and for late steps of cytokinesis in mouse oocytes. Dev Biol 301:254–265

    PubMed  CAS  Google Scholar 

  • Duncan FE, Moss SB, Schultz RM, Williams CJ (2005) PAR-3 defines a central subdomain of the cortical actin cap in mouse eggs. Dev Biol 280:38–47

    PubMed  CAS  Google Scholar 

  • Edwards RG (2000) The role of embryonic polarities in preimplantation growth and implantation of mammalian embryos. Hum Reprod Suppl 6:1–8

    Google Scholar 

  • Edwards RG (2001) Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reprod Biomed Online 3:138–160

    PubMed  CAS  Google Scholar 

  • Edwards RG, Ludwig M (2003) Are major defects in children conceived in vitro due to innate problems in patients or to induced genetic damage? Reprod Biomed Online 7:131–138

    PubMed  Google Scholar 

  • Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T (2011) Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 11(5):783–796

    PubMed  CAS  Google Scholar 

  • El-Mestrah M, Castle PE, Borossa G, Kan FW (2002) Subcellular distribution of ZP1, ZP2, and ZP3 glycoproteins during folliculogenesis and demonstration of their topographical disposition within the zona matrix of mouse ovarian oocytes. Biol Reprod 66:866–876

    PubMed  CAS  Google Scholar 

  • Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P, Robben TJ, Coonrod S, Gossen JA (2007) Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 273:25–31

    PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    PubMed  CAS  Google Scholar 

  • Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116:2603–2611

    PubMed  CAS  Google Scholar 

  • Evans JP, Foster JA, McAvey BA, Gerton GL, Kopf GS, Schultz RM (2000) The effects of perturbation of cell polarity on molecular markers of sperm-egg binding sites on mouse eggs. Biol Reprod 62:76–84

    PubMed  CAS  Google Scholar 

  • Fukata M, Kuroda S, Fujii K, Nakamura T, Shoji I, Matsuura Y, Okawa K, Iwamatsu A, Kikuchi A, Kaibuchi K (1997) Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. J Biol Chem 272:29579–29583

    PubMed  CAS  Google Scholar 

  • Fukata M, Kuroda S, Nakagawa M, Kawajiri A, Itoh N, Shoji I, Matsuura Y, Yonehara S, Fujisawa H, Kikuchi A, Kaibuchi K (1999) Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J Biol Chem 274:26044–26050

    PubMed  CAS  Google Scholar 

  • Gallicano GI, Larabell CA, McGaughey RW, Capco DG (1994) Novel cytoskeletal elements in mammalian eggs are composed of a unique arrangement of intermediate filaments. Mech Dev 45:211–226

    PubMed  CAS  Google Scholar 

  • Gautier J, Norbury C, Lohka M, Nurse P, Maller J (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54:433–439

    PubMed  CAS  Google Scholar 

  • Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL (1990) Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60:487–494

    PubMed  CAS  Google Scholar 

  • Glotzer M (2005) The molecular requirements for cytokinesis. Science 307:1735–1739

    PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    PubMed  CAS  Google Scholar 

  • Gönczy P (2002) Mechanisms of spindle positioning: focus on flies and worms. Trends Cell Biol 12:332–339

    PubMed  Google Scholar 

  • Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66:155–178

    PubMed  CAS  Google Scholar 

  • Halet G, Carroll J (2007) Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell 12:309–317

    PubMed  CAS  Google Scholar 

  • Harris ES, Higgs HN (2004) Actin cytoskeleton: formins lead the way. Curr Biol 14:R520–R522

    PubMed  CAS  Google Scholar 

  • Hiiragi T, Alarcon VB, Fujimori T, Louvet-Vallee S, Maleszewski M, Marikawa Y, Maro B, Solter D (2006) Where do we stand now? Mouse early embryo patterning meeting in Freiburg, Germany (2005). Int J Dev Biol 50:581–586; discussion 586–587

    PubMed  Google Scholar 

  • Hoodbhoy T, Avilés M, Baibakov B, Epifano O, Jiménez-Movilla M, Gauthier L, Dean J (2006) ZP2 and ZP3 traffic independently within oocytes prior to assembly into the extracellular zona pellucida. Mol Cell Biol 26:7991–7998

    PubMed  CAS  Google Scholar 

  • Huo LJ, Fan HY, Zhong ZS, Chen DY, Schatten H, Sun QY (2004) Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech Dev 121:1275–1287

    PubMed  CAS  Google Scholar 

  • Huo LJ, Yu LZ, Liang CG, Fan HY, Chen DY, Sun QY (2005) Cell-cycle-dependent subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. Zygote 13:45–53

    PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14:146–151

    PubMed  CAS  Google Scholar 

  • Johnson MH (2009) From mouse egg to mouse embryo: polarities, axes, and tissues. Annu Rev Cell Dev Biol 25:483–512

    PubMed  CAS  Google Scholar 

  • Kan R, Yurttas P, Kim B, Jin M, Wo L, Lee B, Gosden R, Coonrod SA (2011) Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol 350:311–322

    PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121:287–297

    PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1998) Apparent continuity between the METRO and late RNA localization pathways during oogenesis in Xenopus. Mech Dev 73:95–106

    PubMed  CAS  Google Scholar 

  • Kloc M, Larabell C, Etkin LD (1996) Elaboration of the messenger transport organizer pathway (METRO) for localization of RNA to the vegetal cortex of Xenopus oocytes. Dev Biol 180:119–130

    PubMed  CAS  Google Scholar 

  • Kloc M, Larabell C, Chan P-YA, Etkin L (1998) Contribution of METRO pathway localized molecules to the organization of the germ cell lineage. Mech Dev 75:81–93

    PubMed  CAS  Google Scholar 

  • Kloc M, Bilinski S, Chan AP, Allen LH, Zearfoss NR, Etkin LD (2001) RNA localization and germ cell determination in Xenopus. Int Rev Cytol 203:63–91

    PubMed  CAS  Google Scholar 

  • Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004a) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266:43–61

    PubMed  CAS  Google Scholar 

  • Kloc M, Bilinski S, Etkin LD (2004b) The Balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36

    PubMed  CAS  Google Scholar 

  • Kloc M, Jaglarz M, Dougherty M, Stewart MD, Nel-Themaat L, Bilinski S (2008) Mouse early oocytes are transiently polar: three-dimensional and ultrastructural analysis. Exp Cell Res 314:3245–3254

    PubMed  CAS  Google Scholar 

  • Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinine promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952

    PubMed  CAS  Google Scholar 

  • Kubiak JZ (2012) Protein kinase assays for measuring MPF and MAPK activities in mouse and rat oocytes and early embryos. In: Homer H (ed) Methods in molecular biology. Springer, Heidelberg (in press)

    Google Scholar 

  • Kubiak J, Paldi A, Weber M, Maro B (1991) Genetically identical parthenogenetic mouse embryos produced by inhibition of the first meiotic cleavage with cytochalasin D. Development 111:763–769

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Weber M, Géraud G, Maro B (1992) Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes. J Cell Sci 102:457–467

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Weber M, de Pennart H, Winston NJ, Maro B (1994) The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF. EMBO J 12:3773–3778

    Google Scholar 

  • Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K (1998) Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281:832–835

    PubMed  CAS  Google Scholar 

  • Labbé JC, Picard A, Karsenti E, Dorée M (1988) An M-phase-specific protein kinase of Xenopus oocytes: partial purification and possible mechanism of its periodic activation. Dev Biol 127:157–169

    PubMed  Google Scholar 

  • Labbé JC, Picard A, Peaucellier G, Cavadore JC, Nurse P, Doree M (1989) Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation. Cell 57:253–263

    PubMed  Google Scholar 

  • Laipis PJ, Van de Walle MJ, Hauswirth WW (1988) Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc Natl Acad Sci USA 85:8107–8110

    PubMed  CAS  Google Scholar 

  • Larson SM, Lee HJ, Hung PH, Matthews LM, Robinson DN, Evans JP (2010) Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol Biol Cell 21:3182–3192

    PubMed  CAS  Google Scholar 

  • Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, Maas R, Leder P (2002) Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouseoocytes. Nat Cell Biol 4:921–929

    PubMed  CAS  Google Scholar 

  • Lechowska A, Bilinski S, Choi Y, Shin Y, Kloc M, Rajkovic A (2011) Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown. J Assist Reprod Genet 28:583–589

    PubMed  Google Scholar 

  • Ledan E, Polanski Z, Terret ME, Maro B (2001) Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev Biol 232:400–413

    PubMed  CAS  Google Scholar 

  • Lei Y, Warrior R (2000) The Drosophila Lissencephaly1 (DLis1) is required for nuclear migration. Dev Biol 226:57–72

    PubMed  CAS  Google Scholar 

  • Levi M, Ninio-Mani L, Shalgi R (2012). Src Protein Kinases in Mouse and Rat Oocytes and Embryos. Results Probl Cell Differ. 55., 93–106

    Google Scholar 

  • Li S, Ou XH, Wang ZB et al (2010) ERK3 is required for metaphase-anaphase transition in mouse oocyte meiosis. PLoS One 5(9):pii: e13074

    Google Scholar 

  • Longo FJ (1987) Actin-plasma membrane associations in mouse eggs and oocytes. J Exp Zool 243:299–309

    PubMed  CAS  Google Scholar 

  • Longo FJ, Chen DY (1985) Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol 107:382–394

    PubMed  CAS  Google Scholar 

  • Ma C, Benink HA, Cheng D, Montplaisir V, Wang L, Xi Y, Zheng PP, Bement WM, Liu XJ (2006) Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation. Curr Biol 16:214–220

    PubMed  CAS  Google Scholar 

  • Maciejewska Z, Pascal A, Kubiak JZ, Ciemerych MA (2011) Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos. Folia Histochem Cytobiol 49(3):528–534

    PubMed  CAS  Google Scholar 

  • Maro B, Johnson MH, Webb M, Flach G (1986) Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J Embryol Exp Morphol 92:11–32

    PubMed  CAS  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145

    PubMed  CAS  Google Scholar 

  • Mitra J, Schultz RM (1996) Regulation of the acquisition of meiotic competence in the mouse: changes in the subcellular localization of cdc2, cyclin B1, cdc25C and wee1, and in the concentration of these proteins and their transcripts. J Cell Sci 109:2407–2415

    PubMed  CAS  Google Scholar 

  • Miyazaki A, Kato KH, Nemoto S (2005) Role of microtubules and centrosomes in the eccentric relocation of the germinal vesicle upon meiosis reinitiation in sea-cucumber oocytes. Dev Biol 280:237–247

    PubMed  CAS  Google Scholar 

  • Monnot S, Gigarel N, Samuels DC, Burlet P, Hesters L, Frydman N, Frydman R, Kerbrat V, Funalot B, Martinovic J, Benachi A, Feingold J, Munnich A, Bonnefont JP, Steffann J (2011) Segregation of mtDNA throughout human embryofetal development: m.3243A > G as a model system. Hum Mutat 32:116–125

    PubMed  CAS  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186

    PubMed  CAS  Google Scholar 

  • Na J, Zernicka-Goetz M (2006) Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Curr Biol 16:1249–1254

    PubMed  CAS  Google Scholar 

  • Nakagomi S, Barsoum MJ, Bossy-Wetzel E, Sütterlin C, Malhotra V, Lipton SA (2008) A golgi fragmentation pathway in neurodegeneration. Neurobiol Dis 29:221–231

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Tachibana K, Igarashi Y, Yasuda H, Tanahashi N, Tanaka K, Ohsumi K, Kishimoto T (2000) A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes Dev 14:2344–2357

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac and Cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 23:456–459

    PubMed  CAS  Google Scholar 

  • Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118:2085–2092

    PubMed  CAS  Google Scholar 

  • Ookata K, Hisanaga S, Bulinski JC, Murofushi H, Aizawa H, Itoh TJ, Hotani H, Okumura E, Tachibana K, Kishimoto T (1995) Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 128:849–862

    PubMed  CAS  Google Scholar 

  • Pepling ME, Spradling AC (1998) Female mouse germ cells form synchronously dividing cysts. Development 125:3323–3328

    PubMed  CAS  Google Scholar 

  • Pepling ME, Wilhelm JE, O’Hara AL, Gephardt GW, Spradling AC (2007) Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA 104:187–192

    PubMed  CAS  Google Scholar 

  • Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, Schuh M (2011) Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr Biol 21:955–960

    PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115:1–17

    PubMed  CAS  Google Scholar 

  • Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila Spire is an actin nucleation factor. Nature 433:382–388

    PubMed  CAS  Google Scholar 

  • Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocytespecific gene expression. Science 305:1157–1159

    PubMed  CAS  Google Scholar 

  • Rime H, Ozon R (1990) Protein phosphatases are involved in the in vivo activation of histone H1 kinase in mouse oocyte. Dev Biol 141:115–122

    PubMed  CAS  Google Scholar 

  • Roze D, Rousset F, Michalakis Y (2005) Germline bottlenecks, biparental inheritance and selection on mitochondrial variants: a two-level selection model. Genetics 170:1385–1399

    PubMed  CAS  Google Scholar 

  • Sanfins A, Lee GY, Plancha CE, Overstrom EW, Albertini DF (2003) Distinctions in meiotic spindle structure and assembly during in vitro and in vivo maturation of mouse oocytes. Biol Reprod 69:2059–2067

    PubMed  CAS  Google Scholar 

  • Sanfins A, Plancha CE, Overstrom EW, Albertini DF (2004) Meiotic spindle morphogenesis in in vivo and in vitro matured mouse oocytes: insights into the relationship between nuclear and cytoplasmic quality. Hum Reprod 19:2889–2899

    PubMed  Google Scholar 

  • Sardet C, Prodon F, Dumollard R, Chang P, Chênevert J (2002) Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 241:1–23

    PubMed  CAS  Google Scholar 

  • Schindler K (2011) Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 53:309–341

    PubMed  CAS  Google Scholar 

  • Schindler K, Schultz RM (2009) The CDC14A phosphatase regulates oocyte maturation in mouse. Cell Cycle 8:1090–1098

    PubMed  CAS  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    PubMed  CAS  Google Scholar 

  • Shannon KB, Li R (1999) The multiple roles of Cyk1p in the assembly and function of the actomyosin ring in budding yeast. Mol Biol Cell 10:283–296

    PubMed  CAS  Google Scholar 

  • Simerly C, Nowak G, de Lanerolle P, Schatten G (1998) Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization and mitosis in mouse oocytes and embryos. Mol Biol Cell 9:2509–2525

    PubMed  CAS  Google Scholar 

  • Sun SC, Sun QY, Kim NH (2011a) JMY is required for asymmetric division and cytokinesis in mouse oocytes. Mol Hum Reprod 17:286–295

    Google Scholar 

  • Sun SC, Wang ZB, Xu YN, Lee SE, Cui XS, Kim NH (2011b) Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS One 6:e18392

    PubMed  CAS  Google Scholar 

  • Swan A, Nguyen T, Suter B (1999) Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1:444–449

    PubMed  CAS  Google Scholar 

  • Szollosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521–541

    PubMed  CAS  Google Scholar 

  • Tan X, Peng A, Wang Y, Tang Z (2005) The effects of proteasome inhibitor lactacystin on mouse oocyte meiosis and first cleavage. Sci China C Life Sci 48:287–294

    PubMed  CAS  Google Scholar 

  • Terada Y, Simerly C, Schatten G (2000) Microfilament stabilization by jasplakinolide arrests oocyte maturation, cortical granule exocytosis, sperm incorporation cone resorption, and cell-cycle progression, but not DNA replication, during fertilization in mice. Mol Reprod Dev 56:89–98

    PubMed  CAS  Google Scholar 

  • Van Blerkom J, Bell H (1986) Regulation of development in the fully grown mouse oocyte: chromosome-mediated temporal and spatial differentiation of the cytoplasm and plasma membrane. J Embryol Exp Morphol 93:213–238

    PubMed  Google Scholar 

  • Verlhac MH, de Pennart H, Maro B, Cobb MH, Clarke HJ (1993) MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol 158, 330–340

    PubMed  CAS  Google Scholar 

  • Verlhac MH, Kubiak JZ, Weber M, Géraud G, Colledge WH, Evans MJ, Maro B (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122:815–822

    PubMed  CAS  Google Scholar 

  • Verlhac M-H, Lefebvre C, Guillaud P, Rassinier P, Maro B (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10:1303–1306

    PubMed  CAS  Google Scholar 

  • VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E, Suzuki T, Spang R, Klein CA, Perry AC (2011) Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 30:1841–1851

    PubMed  CAS  Google Scholar 

  • Vinot S, Le T, Maro B, Louvet-Vallee S (2004) Two Par6 proteins become asymmetrically localized during establishment of polarity in mouse oocytes. Curr Biol 14:520–525

    PubMed  CAS  Google Scholar 

  • Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallée S (2005) Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol 282:307–319

    PubMed  CAS  Google Scholar 

  • Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488

    PubMed  CAS  Google Scholar 

  • Weber M, Kubiak JZ, Arlinghaus RB, Pines J, Maro B (1991) c-mos proto-oncogene product is partly degraded after release from meiotic arrest and persists during interphase in mouse zygotes. Dev Biol 148:393–397

    PubMed  CAS  Google Scholar 

  • Winston NJ (1997) Stability of cyclin B protein during meiotic maturation and the first mitotic cell division in mouse oocytes. Biol Cell 89:211–219

    PubMed  CAS  Google Scholar 

  • Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256:73–88

    PubMed  CAS  Google Scholar 

  • Xiong B, Yu LZ, Wang Q, Ai JS, Yin S, Liu JH, OuYang YC, Hou Y, Chen DY, Zou H, Sun QY (2007) Regulation of intracellular MEK1/2 translocation in mouse oocytes: cytoplasmic dynein/dynactin-mediated poleward transport and cyclin B degradation-dependent release from spindle poles. Cell Cycle 6:1521–1527

    PubMed  Google Scholar 

  • Yang HY, McNally K, McNally FJ (2003) MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C. elegans. Dev Biol 260:245–259

    PubMed  CAS  Google Scholar 

  • Yang HY, Mains PE, McNally FJ (2005) Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter. J Cell Biol 169:447–457

    PubMed  CAS  Google Scholar 

  • Yasuda S, Taniguchi H, Oceguera-Yanez F, Ando Y, Watanabe S, Monypenny J, Narumiya S (2006) An essential role of Cdc42-like GTPases in mitosis of HeLa cells. FEBS Lett 580:3375–3380

    PubMed  CAS  Google Scholar 

  • Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13:1252–1258

    PubMed  CAS  Google Scholar 

  • Yu LZ, Xiong B, Gao WX, Wang CM, Zhong ZS, Huo LJ, Wang Q, Hou Y, Liu K, Liu XJ, Schatten H, Chen DY, Sun QY (2007) MEK1/2 regulates microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte meiotic maturation. Cell Cycle 6:330–338

    PubMed  CAS  Google Scholar 

  • Zernicka-Goetz M, Huang S (2010) Stochasticity versus determinism in development: a false dichotomy? Nat Rev Genet 11:743–744

    PubMed  CAS  Google Scholar 

  • Zernicka-Goetz M, Verlhac M-H, Géraud G, Kubiak JZ (1997) Protein phosphatases control MAP kinase activation and microtubule organization during rat oocyte maturation. Eur J Cell Biol 72:30–38

    PubMed  CAS  Google Scholar 

  • Zhang YZ, Ouyang YC, Hou Y, Schatten H, Chen DY, Sun QY (2008) Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev Growth Differ 50:189–201

    PubMed  Google Scholar 

  • Zhang CH, Wang ZB, Quan S, Huang X, Tong JS, Ma JY, Guo L, Wei YC, Ouyang YC, Hou Y, Xing FQ, Sun QY (2011) GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte. Cell Cycle 10:1861–1870

    PubMed  CAS  Google Scholar 

  • Zhong ZS, Huo LJ, Liang CC, Chen DY, Sun QY (2005) Small GTPase RhoA is required for ooplasmic segregation and spindle rotation, but not for spindle organization and chromosome separation during mouse oocyte maturation, fertilization, and early cleavage. Mol Reprod Dev 41:256–261

    Google Scholar 

  • Zhou RR, Wang B, Wang J, Schatten H, Zhang YZ (2010) Is the mitochondrial cloud the selection machinery for preferentially transmitting wild-type mtDNA between generations? Rewinding Müller’s ratchet efficiently. Curr Genet 56:101–107

    PubMed  CAS  Google Scholar 

  • Zigmond SH (2004) Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 16:99–105

    PubMed  CAS  Google Scholar 

  • Zuchero JB, Coutts AS, Quinlan ME, Thangue NB, Mullins RD (2009) p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol 11:451–459

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Guillaume Halet for reading the manuscript and valuable discussions. While writing this article, MK was supported by NSF grant 0904186 and JZK by ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Kloc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kloc, M., Ghobrial, R.M., Borsuk, E., Kubiak, J.Z. (2012). Polarity and Asymmetry During Mouse Oogenesis and Oocyte Maturation. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_2

Download citation

Publish with us

Policies and ethics