Skip to main content

Mouse Oviduct Development

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

The oviduct, or Fallopian tube in humans, transports oocytes and sperm, serves as the site of fertilization, and supports early embryonic development. The oviduct is essential for fertility. In the mouse, the oviduct is a coiled, complex structure that develops from the simple embryonic Müllerian duct. The oviduct consists of four segments, including the infundibulum, ampulla, isthmus, and uterotubal junction. Additionally, the mouse oviduct forms coils, develops longitudinal folds, and undergoes both mesenchymal and epithelial differentiation. Oviduct development and differentiation occurs perinatally. Several signaling pathways have been found to be involved in oviduct formation, such as Wnt, Tgfβ, microRNA processing, as well as others. Overall, the process of oviduct development is poorly understood and can be utilized to further knowledge of epithelial–mesenchymal interactions, regulation of coiling, characteristics of pseudostratified epithelia, and smooth muscle differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzelius BA, Camner P, Mossberg B (1978) On the function of cilia in the female reproductive tract. Fertil Steril 29(1):72–4

    PubMed  CAS  Google Scholar 

  • Agduhr E (1927) Studies on the structure and development of the bursa ovarica and the tuba uterina in the mouse. Acta Zoologica 8:1–133

    Article  Google Scholar 

  • Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J (2005) Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol 288(1):276–83

    Article  PubMed  CAS  Google Scholar 

  • Bakst MR (1998) Structure of the avian oviduct with emphasis on sperm storage in poultry. J Exp Zool 282(4–5):618–26

    Article  PubMed  CAS  Google Scholar 

  • Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL (1996) Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122(9):2687–96

    PubMed  CAS  Google Scholar 

  • Blandau RJ (1978) Comparative aspects of tubal anatomy and physiology as they relate to reconstructive procedures. J Reprod Med 21(1):7–15

    PubMed  CAS  Google Scholar 

  • Borcea I (1906) Recherches sur le systeme Urogenital-genital des Elasmobranches. Arch Zool Exper et Gen 4:4,199–484

    Google Scholar 

  • Brody JR, Cunha GR (1989) Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: I. Normal development. Am J Anat 186(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Knowles HJ, Hebert JL, Hackett BP (1998) Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest 102(6):1077–82

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ, Harding M, Moayedi Y, Mardon G (2008) Mouse Dach1 and Dach2 are redundantly required for Mullerian duct development. Genesis 46(4):205–13

    Article  PubMed  CAS  Google Scholar 

  • Deutscher E, Hung-Chang Yao H (2007) Essential roles of mesenchyme-derived beta-catenin in mouse Mullerian duct morphogenesis. Dev Biol 307(2):227–36

    Article  PubMed  CAS  Google Scholar 

  • Dirksen ER (1974) Ciliogenesis in the mouse oviduct. A scanning electron microscope study. J Cell Biol 62(3):899–904

    Article  PubMed  CAS  Google Scholar 

  • Eddy CA, Pauerstein CJ (1980) Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol 23(4):1177–93

    Article  PubMed  CAS  Google Scholar 

  • Gendron RL, Paradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E (1997) Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod 56(5):1097–105

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez G, Behringer RR (2009) Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev 76(7):678–88

    Article  PubMed  CAS  Google Scholar 

  • Gruenwald P (1941) The relation of the growing Müllerian Duct to the Wolffian Duct and its importance for the genesis of malformations. Anat Rec 81:1–19

    Article  Google Scholar 

  • Hafez ESE, Blandau RJ (1969) The mammalian oviduct: comparative biology and methodology. The University of Chicago Press, Chicago

    Google Scholar 

  • Hagiwara H, Ohwada N, Aoki T, Takata K (2000) Ciliogenesis and ciliary abnormalities. Med Electron Microsc 33(3):109–14, Official journal of the Clinical Electron Microscopy Society of Japan

    Article  PubMed  CAS  Google Scholar 

  • Halbert SA, Becker DR, Szal SE (1989) Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod 40(6):1131–6

    Article  PubMed  CAS  Google Scholar 

  • Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK (2008) Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149(12):6207–12

    Article  PubMed  CAS  Google Scholar 

  • Ikawa M, Inoue N, Benham AM, Okabe M (2010) Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest 120(4):984–94

    Article  PubMed  CAS  Google Scholar 

  • Jansen RP (1984) Endocrine response in the fallopian tube. Endocr Rev 5(4):525–51

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Ghyselinck N, Krezel W, Dupe V, Grondona JM, Chambon P (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124(2):313–26

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Behringer RR (2003) Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet 4(12):969–80

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132(12):2809–23

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Shawlot W, Kania A, Behringer RR (2004) Requirement of Lim1 for female reproductive tract development. Development 131(3):539–49

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Stewart CA, Wang Y, Fujioka K, Thomas NC, Jamin SP, Behringer RR (2011) beta-Catenin is essential for Müllerian duct regression during male sexual differentiation. Development 138(10):1967–75

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Fujita H (1978) Electron-microscopic studies on the development and aging of the oviduct epithelium of mice. Anat Embryol 152(3):243–59

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351(6322):117–21

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78(2):191–201

    Article  PubMed  CAS  Google Scholar 

  • Kurita T, Cooke PS, Cunha GR (2001) Epithelial-stromal tissue interaction in paramesonephric (Müllerian) epithelial differentiation. Dev Biol 240(1):194–211

    Article  PubMed  CAS  Google Scholar 

  • Kurpios NA, Ibanes M, Davis NM, Lui W, Katz T, Martin JF, Izpisua Belmonte JC, Tabin CJ (2008) The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci USA 105(25):8499–506

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Agno JE, Edson MA, Nagaraja AK, Nagashima T, Matzuk MM (2011) Transforming growth factor beta receptor type 1 is essential for female reproductive tract integrity and function. PLoS Genet 7(10):e1002320

    Article  PubMed  CAS  Google Scholar 

  • Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 12(4):363–72

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120(10):2749–71

    PubMed  CAS  Google Scholar 

  • Migone FF, Ren Y, Cowan RG, Harman RM, Nikitin AY, Quirk SM (2012) Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract. Genesis 50(1):28–40

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Sassoon DA (1998) Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development 125(16):3201–11

    PubMed  CAS  Google Scholar 

  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124(9):1653–64

    PubMed  CAS  Google Scholar 

  • Morris LH, Hunter RH, Allen WR (2000) Hysteroscopic insemination of small numbers of spermatozoa at the uterotubal junction of preovulatory mares. J Reprod Fertil 118(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ et al (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22(10):2336–52

    Article  PubMed  CAS  Google Scholar 

  • Newbold RR, Jefferson WN, Padilla-Banks E (2009) Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect 117(6):879–85

    PubMed  CAS  Google Scholar 

  • Newbold RR, Tyrey S, Haney AF, McLachlan JA (1983) Developmentally arrested oviduct: a structural and functional defect in mice following prenatal exposure to diethylstilbestrol. Teratology 27(3):417–26

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Bjornsdottir S, Hoyer PE, Byskov AG (2000) Ontogeny of oestrogen receptor alpha in gonads and sex ducts of fetal and newborn mice. J Reprod Fertil 118(1):195–204

    Article  PubMed  CAS  Google Scholar 

  • Okada A, Ohta Y, Brody SL, Watanabe H, Krust A, Chambon P, Iguchi T (2004) Role of foxj1 and estrogen receptor alpha in ciliated epithelial cell differentiation of the neonatal oviduct. J Mol Endocrinol 32(3):615–25

    Article  PubMed  CAS  Google Scholar 

  • Orvis GD, Behringer RR (2007) Cellular mechanisms of Müllerian duct formation in the mouse. Dev Biol 306(2):493–504

    Article  PubMed  CAS  Google Scholar 

  • Parr BA, McMahon AP (1998) Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 395(6703):707–10

    Article  PubMed  CAS  Google Scholar 

  • Patek E, Nilsson L, Johannisson E (1972) Scanning electron microscopic study of the human fallopian tube. Report II. Fetal life, reproductive life, and postmenopause. Fertil Steril 23(10):719–33

    PubMed  CAS  Google Scholar 

  • Perlman S, Hertweck P, Fallat ME (2005) Paratubal and tubal abnormalities. Semin Pediatr Surg 14(2):124–34

    Article  PubMed  Google Scholar 

  • Poweirza S (1912) Über Änderungen im Bau der Ausführwege des weiblichen Geschlechts-apparates der Maus während ihres postembyonalen Lebens. Bull Int Acad Sci Krackow 349–399

    Google Scholar 

  • Pulkkinen MO (1995) Oviductal function is critical for very early human life. Ann Med 27(3):307–10

    Article  PubMed  CAS  Google Scholar 

  • Satir P (1992) Mechanisms of ciliary movement: contributions from electron microscopy. Scanning Microsc 6(2):573–9

    PubMed  CAS  Google Scholar 

  • Shaw JL, Dey SK, Critchley HO, Horne AW (2010) Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum Reprod Update 16(4):432–444

    Google Scholar 

  • Shi D, Komatsu K, Uemura T, Fujimori T (2011) Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct. Genes Cells 16(3):282–90, Devoted to molecular & cellular mechanisms

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Sugihara A, Uchida K, Sato T, Ohta Y, Katsu Y, Watanabe H, Iguchi T (2002) Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice. Reprod Toxicol 16(2):107–16

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Park JH, Tanwar PS, Kaneko-Tarui T, Mittal S, Lee HJ, Teixeira JM (2012) Deletion of tuberous sclerosis 1 in somatic cells of the murine reproductive tract causes female infertility. Endocrinology 153(1):404–16

    Article  PubMed  CAS  Google Scholar 

  • Taylor HS, Vanden Heuvel GB, Igarashi P (1997) A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 57(6):1338–45

    Article  PubMed  CAS  Google Scholar 

  • Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121(12):4057–65

    PubMed  CAS  Google Scholar 

  • Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397(6718):405–9

    Article  PubMed  CAS  Google Scholar 

  • Wake MH, Dickie R (1998) Oviduct structure and function and reproductive modes in amphibians. J Exp Zool 282(4–5):477–506

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Guo Y, Wang D, Kingsley PJ, Marnett LJ, Das SK, DuBois RN, Dey SK (2004) Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med 10(10):1074–80

    Article  PubMed  CAS  Google Scholar 

  • Woodruff JD, Paurstein CJ (1969) The fallopian tube: structure, function, pathology, and management. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Wourms JP (1977) Reproduction and development in Chondrichthyan fishes. Am Zool 17:379–410

    Google Scholar 

  • Yamanouchi H, Umezu T, Tomooka Y (2010) Reconstruction of oviduct and demonstration of epithelial fate determination in mice. Biol Reprod 82(3):528–33

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Ma L (2005) Development of the mammalian female reproductive tract. J Biochem 137(6):677–83

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Behringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stewart, C.A., Behringer, R.R. (2012). Mouse Oviduct Development. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_14

Download citation

Publish with us

Policies and ethics